180 research outputs found

    Field-Scale Soil Property Changes under Switchgrass Managed for Bioenergy

    Get PDF
    The capacity of perennial grasses to affect change in soil properties is well documented but information on switchgrass (Panicum virgatum L.) managed for bioenergy is limited. An on-farm study (10 fields) in North Dakota, South Dakota, and Nebraska was sampled before switchgrass establishment and after 5 years to determine changes in soil bulk density (SBD), pH, soil phosphorus (P), and equivalent mass soil organic carbon (SOC). Changes in SBD were largely constrained to near-surface depths (0–0.05 m). SBD increased (0–0.05 m) at the Nebraska locations (mean=0.16 Mgm-3), while most South Dakota and North Dakota locations showed declines in SBD (mean=-0.18 Mgm-3; range=-0.42–0.07 Mgm-3). Soil pH change was significant at five of the 10 locations at near surface depths (0–0.05 m), but absolute changes were modest (range=-0.67–0.44 pH units). Available P declined at all sites where it was measured (North Dakota and South Dakota locations). When summed across the surface 0.3 m depth, annual decreases in available P averaged 1.5 kg P ha-1 yr-1 (range=0.5–2.8 kg P ha-1 yr-1). Averaged across locations, equivalent mass SOC increased by 0.5 and 2.4 Mg Cha-1 yr-1 for the 2500 and 10 000 Mg ha-1 soil masses, respectively. Results from this study underscore the contribution of switchgrass to affect soil property changes, though considerable variation in soil properties exists within and across locations

    Remote sensing applications to resource problems in South Dakota

    Get PDF
    The author has identified the following significant results. Change in the vegetative structure was taking place in the Black Hills. Temporal analysis of the areal extent of open meadows was accomplished using black and white and color infrared aerial photography. A reduction of nearly 1100 hectares of open meadows was determined using photointerpretation. Techniques were developed for the management of meandering lakes, including use of LANDSAT imagery for continuous monitoring, classification of hydrophytes on low altitude CIR imagery, and planning and evaluation of improvements and multiple uses on aerial photography and photo mosaics. LANDSAT data were analyzed statistically from small and entire study scene areas to determine the effect of soils stratifications of corn signatures. Band 5 early season and band 7 later season recorded the strongest evidence of the influence of soils on corn signatures. Significant strata were determined by a multiple range test

    Remote sensing applications to resource problems in South Dakota

    Get PDF
    Cooperative projects between RSI and numerous South Dakota agencies have provided a means of incorporating remote sensing techniques into operational programs. Eight projects discussed in detail are: (1) detection of high moisture zones near interstate 90; (2) thermal infrared census of Canada geese in South Dakota; (3) dutch elm disease detection in urban environment; (4) a feasibility study for monitoring effective precipitation in South Dakota using TIROS-N; (5) open and abandoned dump sites in Spink county; (6) the influence of soil reflectance on LANDSAT signatures of crops; (7) A model implementation program for Lake Herman watershed; and (8) the Six-Mile Creek investigation follow-on

    Near-Term Effects of Perennial Grasses on Soil Carbon and Nitrogen in Eastern Nebraska

    Get PDF
    Incorporating native perennial grasses adjacent to annual row crop systems managed on marginal lands can increase system resiliency by diversifying food and energy production. This study evaluated (1) soil organic C (SOC) and total N stocks (TN) under warm-season grass (WSG) monocultures and a low diversity mixture compared to an adjacent no-till continuous-corn system, and (2) WSG total above-ground biomass (AGB) in response to two levels of N fertilization from 2012 to 2017 in eastern Nebraska, USA. The WSG treatments consisted of (1) switchgrass (SWG), (2) big bluestem (BGB), and (3) low-diversity grass mixture (LDM; big bluestem, Indiangrass, and sideoat grama). Soils were sampled at fixed depth increments (0–120 cm) in the WSG plots and in the adjacent corn experiment in 2012 and 2017. Soil stocks (Mg ha-1) of SOC and TN were calculated on an equivalent soil mass (ESM) basis and compared within the three WSG treatments as well as between experiments (corn compared to the mean of all WSGs). Soil organic C and TN stocks within soil layers and cumulative stocks responded to the main effect of WSG (PWSG \u3c 0.05) but were no different when comparing the WSGs to corn (Pexpt = NS). Both SOC/TN stocks and cumulative stocks were generally greater in the LDM compared to the BGB. Neither SOC nor TN changed over time under either the WSGs or corn. Warm-season grass AGB responded to a three-way interaction of year, N rate, and WSG (p = 0.0007). Decreases in AGB over time were significant across WSGs and N levels except for SWG at 56 kg N ha-1 and LDM at 112 kg N ha-1. Above-ground biomass was generally greater in the LDM after the first harvest year (2013). Results suggest that incorporating WSGs into marginal cropland can maintain SOC and TN stocks while providing a significant source of biomass to be used in energy production or in integrated livestock systems

    Perennial warm-season grasses for producing biofuel and enhancing soil properties: An alternative to corn residue removal

    Get PDF
    Removal of corn (Zea mays L.) residues at high rates for biofuel and other off-farm uses may negatively impact soil and the environment in the long term. Biomass removal from perennial warm-season grasses (WSGs) grown in marginally-productive lands could be an alternative to corn residue removal as biofuel feedstocks while controlling water and wind erosion, sequestering carbon (C), cycling water and nutrients, and enhancing other soil ecosystem services. We compared wind and water erosion potential, soil compaction, soil hydraulic properties, soil organic C (SOC), and soil fertility between biomass removal from WSGs and corn residue removal from rainfed no-till continuous corn on a marginally productive site on a silty clay loam in eastern Nebraska after 2 and 3 yr of management. The field-scale treatments were: 1) switchgrass (Panicum virgatum L.), 2) big bluestem (Andropogon gerardii L.), and 3) low-diversity grass mixture [big bluestem, indiangrass (Sorghastrum nutans (L.) Nash), and sideoats grama (Bouteloua curtipendula (Michx.) Torr.)], and 4) 50% corn residue removal with three replications. Across years, corn residue removal increased wind erodible fraction from 41% to 86% and reduced wet aggregate stability from 1.70 to 1.15 mm compared with WSGs in the upper 7.5 cm soil depth. Corn residue removal also reduced water retention by 15% between -33 and -300 kPa potentials and plant available water by 25% in the upper 7.5 cm soil depth. However, corn residue removal did not affect final water infiltration, SOC concentration, soil fertility, and other properties. Overall, corn residue removal increases erosion potential and reduces water retention shortly after removal, suggesting that biomass removal from perennial WSGs is a desirable alternative to corn residue removal for biofuel production and maintenance of soil ecosystem services

    Corn Residue Use by Livestock in the United States

    Get PDF
    Corn (Zea mays L.) residue grazing or harvest provides a simple and economical practice to integrate crops and livestock, but limited information is available on how widespread corn residue utilization is practiced by US producers. In 2010, the USDA Economic Research Service surveyed producers from 19 states on corn grain and residue management practices. Total corn residue grazed or harvested was 4.87 million ha. Approximately 4.06 million ha was grazed by 11.7 million livestock (primarily cattle) in 2010. The majority of grazed corn residue occurred in Nebraska (1.91 million ha), Iowa (385,000 ha), South Dakota (361,000 ha), and Kansas (344,000 ha). Average grazing days ranged from 10 to 73 d (mean = 40 d). Corn residue harvests predominantly occurred in the central and northern Corn Belt, with an estimated 2.9 Tg of corn residue harvested across the 19 states. This survey highlights the importance of corn residue for US livestock, particularly in the western Corn Belt

    Temporal and Spatial Variation in Switchgrass Biomass Composition and Theoretical Ethanol Yield

    Get PDF
    Information on temporal and spatial variation in switchgrass (Panicum virgatum L.) biomass composition as it affects ethanol yield (L Mg–1) at a biorefinery and ethanol production (L ha–1) at the field-scale has previously not been available. Switchgrass biomass samples were collected from a regional, on-farm trial and biomass composition was determined using newly developed near-infrared reflectance spectroscopy (NIRS) prediction equations and theoretical ethanol yield (100% conversion efficiency) was calculated. Total hexose (cell wall polysaccharides and soluble sugars) concentration ranged from 342 to 398 g kg–1 while pentose (arabinose and xylose) concentration ranged from 216 to 245 g kg–1 across fields. Theoretical ethanol yield varied significantly by year and field, with 5 yr means ranging from 381 to 430 L Mg–1. Total theoretical ethanol production ranged from 1749 to 3691 L ha–1 across fields. Variability (coefficient of variation) within established switchgrass fields ranged from 1 to 4% for theoretical ethanol yield (L Mg–1) and 14 to 38% for theoretical ethanol production (L ha–1). Most fields showed a lack of spatial consistency across harvest years for theoretical ethanol yield or total theoretical ethanol production. Switchgrass biomass composition from farmer fields can be expected to have significant annual and field-to-field variation in a production region, and this variation will significantly affect ethanol or other liquid fuel yields per ton or hectare. Cellulosic biorefineries will need to consider this potential variation in biofuel yields when developing their business plans

    Bio-energy retains its mitigation potential under elevated CO2

    Get PDF
    Background If biofuels are to be a viable substitute for fossil fuels, it is essential that they retain their potential to mitigate climate change under future atmospheric conditions. Elevated atmospheric CO2 concentration [CO2] stimulates plant biomass production; however, the beneficial effects of increased production may be offset by higher energy costs in crop management. Methodology/Main findings We maintained full size poplar short rotation coppice (SRC) systems under both current ambient and future elevated [CO2] (550 ppm) and estimated their net energy and greenhouse gas balance. We show that a poplar SRC system is energy efficient and produces more energy than required for coppice management. Even more, elevated [CO2] will increase the net energy production and greenhouse gas balance of a SRC system with 18%. Managing the trees in shorter rotation cycles (i.e. 2 year cycles instead of 3 year cycles) will further enhance the benefits from elevated [CO2] on both the net energy and greenhouse gas balance. Conclusions/significance Adapting coppice management to the future atmospheric [CO2] is necessary to fully benefit from the climate mitigation potential of bio-energy systems. Further, a future increase in potential biomass production due to elevated [CO2] outweighs the increased production costs resulting in a northward extension of the area where SRC is greenhouse gas neutral. Currently, the main part of the European terrestrial carbon sink is found in forest biomass and attributed to harvesting less than the annual growth in wood. Because SRC is intensively managed, with a higher turnover in wood production than conventional forest, northward expansion of SRC is likely to erode the European terrestrial carbon sink
    • …
    corecore