307 research outputs found
Strong correlation between mobility and magnetoresistance in Weyl and Dirac semimetals
The discovery of Weyl and Dirac fermions in solid systems is a recent major breakthrough in the field of condensed matter physics. These materials exhibit extraordinary properties in terms of carrier mobility and magnetoresistance (MR). These two quantities are highly dependent in the Weyl semimetal transition monopnictide family, i.e. NbP, TaP, NbAs, and TaAs. Furthermore, the gathered mobility and MR (or slope of MR) at 2 K in 9 T of other well-known Weyl and Dirac semimetals follow a relation similar to the right turn symbol, i.e. the MR increases rapidly with mobility; thereafter it begins to saturate after reaching a value of 10(3). This suggests a nonlinear dependency. Nevertheless, for materials possessing high carrier mobility, it is valid to expect high MR
Stable Weyl points, trivial surface states and particle-hole compensation in WP2
A possible connection between extremely large magneto-resistance and the
presence of Weyl points has garnered much attention in the study of topological
semimetals. Exploration of these concepts in transition metal phosphide WP2 has
been complicated by conflicting experimental reports. Here we combine
angle-resolved photoemission spectroscopy (ARPES) and density functional theory
(DFT) calculations to disentangle surface and bulk contributions to the ARPES
intensity, the superposition of which has plagued the determination of the
electronic structure in WP2. Our results show that while the hole- and
electron-like Fermi surface sheets originating from surface states have
different areas, the bulk-band structure of WP2 is electron-hole-compensated in
agreement with DFT. Furthermore, the detailed band structure is compatible with
the presence of at least 4 temperature-independent Weyl points, confirming the
topological nature of WP2 and its stability against lattice distortions.Comment: 6 pages, 4 figure
Identification of interface structure for a topological CoS<sub>2</sub> single crystal in oxygen evolution reaction with high intrinsic reactivity
Transition metal chalcogenides such as CoS2 have been reported as competitive catalysts for oxygen evolution reaction. It has been well confirmed that surface modification is inevitable in such a process, with the formation of different re-constructed oxide layers. However, which oxide species should be responsible for the optimized catalytic efficiencies and the detailed interface structure between the modified layer and precatalyst remain controversial. Here, a topological CoS2 single crystal with a well-defined exposed surface is used as a model catalyst, which makes the direct investigation of the interface structure possible. Cross-sectional transmission electron microscopy of the sample reveals the formation of a 2 nm thickness Co3O4 layer that grows epitaxially on the CoS2 surface. Thick CoO pieces are also observed and are loosely attached to the bulk crystal. The compact Co3O4 interface structure can result in the fast electron transfer from adsorbed O species to the bulk crystal compared with CoO pieces as evidenced by the electrochemical impedance measurements. This leads to the competitive apparent and intrinsic reactivity of the crystal despite the low surface geometric area. These findings are helpful for the understanding of catalytic origins of transition metal chalcogenides and the designing of high-performance catalysts with interface-phase engineering
Web-based occupational stress prevention in German micro- and small-sized enterprises – process evaluation results of an implementation study
Background: Structural and behavioral interventions to manage work-related stress are effective in employees. Nonetheless, they have been implemented insufficiently, particularly in micro- and small-sized enterprises (MSE). Main barriers include a lack of knowledge and limited resources, which could potentially be overcome with simplified web-based alternatives for occupational stress prevention. However, there is a lack of implementation research about web-based prevention in realistic settings of MSE.Objective: The aim of this study is to evaluate the implementation process and success of an integrated web-based platform for occupational stress prevention (“System P”) and to identify potential barriers for its uptake and use in MSE in Germany. Methods: This study with a mixed-methods approach investigates eight process-related outcomes in a quantitative part I (adoption, reach, penetration, fidelity/dose, costs, acceptability) and a qualitative part II (acceptability, appropriateness and feasibility). Part I has a pre-post design with two measurements (6 months apart) with 98 individual participants and part II consists of 12 semi-structured interviews with managers and intercorporate stakeholders.Results: Part I revealed shortcomings in the implementation process. Adoption/Reach: Despite extensive marketing efforts, less than 1% of the contacted MSE responded to the offer of System P. A total of 40 MSE registered, 24 of which, characterized by good psychosocial safety climate, adopted System P. Penetration: Within these 24 MSE, 15% of the employees used the system. Fidelity/Dose: 11 MSE started a psychosocial risk-assessment (PRA), and no MSE finished it. The stress-management training (SMT) was started by 25 users and completed by 8. Costs: The use of System P was free of charge, but the time required to engage with was an indirect cost. Part II added insights on the perception of the web-based intervention: Acceptance of System P by users and stakeholders was good and it was assessed as appropriate for MSE. Results for feasibility were mixed. Conclusions: Although System P was generally perceived as useful and appropriate, only a small number of contacted MSE implemented it as intended. Prior experience and sensitivity for occupational (stress) prevention were mentioned as key facilitators, while (perceived) indirect costs were a key barrier. Enabling MSE to independently manage stress prevention online did not result in successful implementation. Increasing external support could be a solution. ⁺ Full project name: “PragmatiKK – Pragmatische Lösungen für die Implementation von Maßnahmen zur Stressprävention in Kleinst- und Kleinbetrieben” (= Pragmatic solutions for the implementation of stress prevention interventions in micro and small-sized enterprises). Trial registration: German Register of Clinical Studies (DRKS) DRKS00026154, date of registration 2021-09-16.</p
Assessing and augmenting SCADA cyber security: a survey of techniques
SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability
Systemic Lupus Erythematosus With Isolated Psychiatric Symptoms and Antinuclear Antibody Detection in the Cerebrospinal Fluid
Background: Organic psychiatric disorders can be caused by immunological disorders, such as autoimmune encephalitis or systemic lupus erythematosus (SLE). SLE can affect most organs, as well as the central nervous system (CNS). In this paper, we describe a patient with an isolated psychiatric syndrome in the context of SLE and discuss the role of antibody detection in the cerebrospinal fluid (CSF).Case presentation: The 22-year-old German male high school graduate presented with obsessive–compulsive and schizophreniform symptoms. He first experienced obsessive–compulsive symptoms at the age of 14. At the age of 19, his obsessive thoughts, hallucinations, diffuse anxiety, depressed mood, severe dizziness, and suicidal ideation became severe and did not respond to neuroleptic or antidepressant treatment. Due to increased antinuclear antibodies (ANAs) with anti-nucleosome specificity in serum and CSF, complement activation, multiple bilateral white matter lesions, and inflammatory CSF alterations, we classified the complex syndrome as an isolated psychiatric variant of SLE. Immunosuppressive treatment with two times high-dose steroids, methotrexate, and hydroxychloroquine led to a slow but convincing improvement.Conclusion: Some patients with psychiatric syndromes and increased ANA titers may suffer from psychiatric variants of SLE, even if the American College of Rheumatology criteria for SLE are not met. Whether the psychiatric symptoms in our patient represent a prodromal stage with the later manifestation of full-blown SLE or a subtype of SLE with isolated CNS involvement remains unclear. Regardless, early diagnosis and initiation of immunosuppressive treatment are essential steps in preventing further disease progression and organ damage. Intrathecal ANAs with extractable nuclear antigen differentiation may be a more sensitive marker of CNS involvement compared with serum analyses alone
Discovery of topological chiral crystals with helicoid arc states
The quantum behaviour of electrons in materials lays the foundation for
modern electronic and information technology. Quantum materials with novel
electronic and optical properties have been proposed as the next frontier, but
much remains to be discovered to actualize the promise. Here we report the
first observation of topological quantum properties of chiral crystals in the
RhSi family. We demonsrate that this material hosts novel phase of matter
exhibiting nearly ideal topological surface properties that emerge as a
consequence of the crystals' structural chirality or handedness. We also
demonstrate that the electrons on the surface of this crystal show a highly
unusual helicoid structure that spirals around two high-symmetry momenta
signalling its topological electronic chirality. Such helicoid Fermi arcs on
the surface experimentally characterize the topological charges of ,
which arise from the bulk chiral fermions. The existence of bulk high-fold
degenerate fermions are guaranteed by the crystal symmetries, however, in order
to determine the topological charge in the chiral crystals it is essential to
identify and study the helical arc states. Remarkably, these topological
conductors we discovered exhibit helical Fermi arcs which are of length ,
stretching across the entire Brillouin zone and orders of magnitude larger than
those found in all known Weyl semimetals. Our results demonstrate novel
electronic topological state of matter on a structurally chiral crystal
featuring helicoid Fermi arc surface states. The exotic electronic chiral
fermion state realised in these materials can be used to detect a quantised
photogalvanic optical response or the chiral magnetic effect and its optical
version in future devices as described by G. Chang \textit{et.al.,}
`Topological quantum properties of chiral crystals' Nature Mat. 17, 978-985
(2018).Comment: 28 pages, 12 figure
- …