806 research outputs found

    La obra de Chopin en Mallorca en el invierno de 1838-1839

    Get PDF
    Este trabajo tiene su inicio en una conferencia-concierto para un grupo de universitarios de Kazajstán que se había trasladado a Mallorca a través de un intercambio cultural realizado por la Escuela de Turismo de Baleares y el gobierno de ese país, en mayo de 1998

    Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1α : modulation by p38 MAPK

    Get PDF
    The transcriptional coactivator PPAR gamma coactivator 1 α (PGC-1α) is a key regulator of metabolic processes such as mitochondrial biogenesis and respiration in muscle and gluconeogenesis in liver. Reduced levels of PGC-1α in humans have been associated with type II diabetes. PGC-1α contains a negative regulatory domain that attenuates its transcriptional activity. This negative regulation is removed by phosphorylation of PGC-1α by p38 MAPK, an important kinase downstream of cytokine signaling in muscle and β-adrenergic signaling in brown fat. We describe here the identification of p160 myb binding protein (p160MBP) as a repressor of PGC-1α. The binding and repression of PGC-1α by p160MBP is disrupted by p38 MAPK phosphorylation of PGC-1α. Adenoviral expression of p160MBP in myoblasts strongly reduces PGC-1α's ability to stimulate mitochondrial respiration and the expression of the genes of the electron transport system. This repression does not require removal of PGC-1α from chromatin, suggesting that p160MBP is or recruits a direct transcriptional suppressor. Overall, these data indicate that p160MBP is a powerful negative regulator of PGC-1α function and provide a molecular mechanism for the activation of PGC-1α by p38 MAPK. The discovery of p160MBP as a PGC-1α regulator has important implications for the understanding of energy balance and diabetes

    Sistema de telepeaje en zonas urbanas

    Get PDF
    Las Low Emission Zones (LEZ) limitan el acceso de vehículos a las zonas más céntricas de las ciudades con el objetivo de reducir la densidad del tráfico y la contaminación ambiental. Estos sistemas tienen problemas de privacidad de los conductores y de efectividad en la detección del fraude. Este artículo presenta un sistema de telepeaje para LEZ que mejora estos problemas.Este trabajo está parcialmente financiado por el Gobierno de España (a través de una beca FPI BES-2012-054780 y los proyectos CO-PRIVACY TIN2011-27076-C03-01, ARES-CONSOLIDER INGENIO 2010 CSD2007-00004 y BallotNext IPT-2012-0603-430000)

    A Cold-Inducible Coactivator of Nuclear Receptors Linked to Adaptive Thermogenesis

    Get PDF
    AbstractAdaptive thermogenesis is an important component of energy homeostasis and a metabolic defense against obesity. We have cloned a novel transcriptional coactivator of nuclear receptors, termed PGC-1, from a brown fat cDNA library. PGC-1 mRNA expression is dramatically elevated upon cold exposure of mice in both brown fat and skeletal muscle, key thermogenic tissues. PGC-1 greatly increases the transcriptional activity of PPARγ and the thyroid hormone receptor on the uncoupling protein (UCP-1) promoter. Ectopic expression of PGC-1 in white adipose cells activates expression of UCP-1 and key mitochondrial enzymes of the respiratory chain, and increases the cellular content of mitochondrial DNA. These results indicate that PGC-1 plays a key role in linking nuclear receptors to the transcriptional program of adaptive thermogenesis

    The seasonal distribution of a highly commercial fish is related to ontogenetic changes in its feeding strategy

    Get PDF
    Improving the knowledge on the biology, ecology and distribution of marine resources exploited by fisheries is necessary to achieve population recovery and sustainable fisheries management. European hake (Merluccius merluccius) is one of the most important target species in the Mediterranean Sea and is largely overexploited by industrial fisheries. Here, we used two methodological approaches to further investigate the seasonal variation in the spatial distribution of European hake considering ontogenetic changes and trophic ecology in the western Mediterranean Sea. Our main aim was to explore if spatial changes in hake distribution were related to trophic behavior, in addition to key environmental factors. We employed a hierarchical Bayesian species distribution modeling approach (B-SDM), using spatial data from two oceanographic surveys conducted during winter and summer. We analyzed how the environmental variables, together with abundance and mean weight distribution of the main preys identified for European hake, affected the seasonal distribution of the species. Results revealed clear differences in the distribution of the European hake between seasons, which were indeed partially correlated to the distribution of their main preys, in addition to the environment. Stable isotope values and Bayesian isotopic mixing models (MixSIAR) revealed substantial seasonal and ontogenetic differences in trophic habits of European hake, partly matching the spatial distribution results. These findings could have implications for a future seasonal-based adaptive fisheries management, as local depletion of prey, or variation in size and condition may affect European hake presence in this area. Moreover, this study illustrates how the sequential application of methodologies provides a more holistic understanding of species seasonality, which is essential to understand the phenological processes of exploited species and their potential shifts due to environmental changes.Postprin

    Reductive dechlorination in recalcitrant sources of chloroethenes in the transition zone between aquifers and aquitards

    Get PDF
    In the transition zone between aquifers and basal aquitards, the perchloroethene pools at an early time in their evolution are more recalcitrant than those elsewhere in the aquifer. The aim of this study is to demonstrate that the biodegradation of chloroethenes from aged pools (i.e., pools after decades of continuous groundwater flushing and dissolution) of perchloroethene is favored in the transition zone. A field site was selected where an aged pool exists at the bottom of a transition zone. Two boreholes were drilled to obtain sediment and groundwater samples to perform chemical, isotopic, molecular, and clone library analyses and microcosm experiments. The main results were as follows: (i) the transition zone is characterized by a high microbial richness; (ii) reductively dechlorinating microorganisms are present and partial reductive dechlorination coexists with denitrification, Fe and Mn reduction, and sulfate reduction; (iii) reductively dechlorinating microorganisms were also present in the zone of the aged pool; (v) the high concentrations of perchloroethene in this zone resulted in a decrease in microbial richness; (vi) however, the presence of fermenting microorganisms supplying electrons for the reductively dechlorinating microorganisms prevented the reductive dechlorination to be inhibited. These findings suggest that biostimulation and/or bioaugmentation could be applied to promote complete reductive dechlorination and to enhance the dissolution of more nonaqueous phase liquids (DNAPL)

    . A trophic latitudinal gradient revealed in anchovy and sardine from the Western Mediterranean Sea using a multi-proxy approach

    Get PDF
    This work combines state-of-the-art methods (DNA metabarcoding) with classic approaches (visual stomach content characterization and stable isotope analyses of nitrogen (δ15N) and carbon (δ13C)) to investigate the trophic ecology of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) at high taxonomic and spatial resolution in the Western Mediterranean Sea. Gut contents observed are in accordance with the dietary plasticity generally described for anchovy and sardine, suggesting a diet related to the opportunistic ingestion of available prey in a certain area and/or time. Genetic tools also showed modest inter-specific differences regarding ingested species. However, inter-specific and intra-specific differences in ingested prey frequencies and prey biomass reflected a latitudinal signal that could indicate a more effective predation on large prey like krill by anchovy versus sardine, as well as a generalized higher large prey ingestion by both species southwards. In fact, both species presented lower δ15N in the northernmost area. This latitudinal gradient indicates changes in the trophic ecology of anchovy and sardine that coincide with previously described better biological conditions for fish in the southern part of the study area as well as higher landings of both species in recent years.En prensa2,92

    Inhibition of PTP1B Restores IRS1-Mediated Hepatic Insulin Signaling in IRS2-Deficient Mice

    Get PDF
    [Objective]: Mice with complete deletion of insulin receptor substrate 2 (IRS2) develop hyperglycaemia, impaired hepatic insulin signaling and elevated gluconeogenesis, whereas mice deficient for protein tyrosine phosphatase (PTP) 1B display an opposing hepatic phenotype characterized by increased sensitivity to insulin. To define the relationship between these two signaling pathways in the regulation of liver metabolism, we used genetic and pharmacological approaches to study the effects of inhibiting PTP1B on hepatic insulin signaling and expression of gluconeogenic enzymes in IRS2−/− deficient mice. [Research design and methods]: We analyzed glucose homeostasis and insulin signaling in liver and isolated hepatocytes from IRS2−/− and IRS2−/−/PTP1B−/−. Additionally, hepatic insulin signaling was assessed in control and IRS2−/− mice treated with resveratrol, an anti-oxidant present in red wine. [Results]: In livers of hyperglycaemic IRS2−/− mice, the expression levels of PTP1B and its association with the insulin receptor (IR) were increased. The absence of PTP1B in the double mutant mice restored hepatic IRS1-mediated phosphatidylinositol (PI) 3-kinase/Akt/Foxo1 signaling. Moreover, resveratrol treatment of hyperglycaemic IRS2−/− mice decreased hepatic PTP1B mRNA and inhibited PTP1B activity, thereby restoring IRS1-mediated PI 3-kinase/Akt/Foxo1 signaling and peripheral insulin sensitivity. [Conclusions]: By regulating the phosphorylation state of IR, PTB1B determines sensitivity to insulin in liver and exerts a unique role in the interplay between IRS1 and IRS2 in the modulation of hepatic insulin action.This work was supported by Ministerio de Ciencia e Innovación Grants (Spain) BFU2008-02420, SAF2009- 08114 (to A.M.V.), BFU2008-04901-C03-03 (to M.R.), BFU2005-00084, and SAF2008-00011 (to D.J.B.) and the Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) (Instituto Salud Carlos III). A.G.-R. holds a postdoctoral contract from CIBERDEM.Peer reviewe
    corecore