89 research outputs found

    Made-to-Measure models of the Galactic Box/Peanut bulge: stellar and total mass in the bulge region

    Full text link
    We construct dynamical models of the Milky Way's Box/Peanut (B/P) bulge, using the recently measured 3D density of Red Clump Giants (RCGs) as well as kinematic data from the BRAVA survey. We match these data using the NMAGIC Made-to-Measure method, starting with N-body models for barred discs in different dark matter haloes. We determine the total mass in the bulge volume of the RCGs measurement (+-2.2 x +- 1.4 x +- 1.2 kpc) with unprecedented accuracy and robustness to be 1.84 +- 0.07 x10^10 Msun. The stellar mass in this volume varies between 1.25-1.6 x10^10 Msun, depending on the amount of dark matter in the bulge. We evaluate the mass-to-light and mass-to-clump ratios in the bulge and compare them to theoretical predictions from population synthesis models. We find a mass-to-light ratio in the K-band in the range 0.8-1.1. The models are consistent with a Kroupa or Chabrier IMF, but a Salpeter IMF is ruled out for stellar ages of 10 Gyr. To match predictions from the Zoccali IMF derived from the bulge stellar luminosity function requires about 40% or 0.7 x10^10 Msun dark matter in the bulge region. The BRAVA data together with the RCGs 3D density imply a low pattern speed for the Galactic B/P bulge of 25-30 km.s-1.kpc-1. This would place the Galaxy among the slow rotators (R >= 1.5). Finally, we show that the Milky Way's B/P bulge has an off-centred X structure, and that the stellar mass involved in the peanut shape accounts for at least 20% of the stellar mass of the bulge, significantly larger than previously thought.Comment: Accepted for publication in MNRA

    Magnetoresistance of disordered graphene: from low to high temperatures

    Full text link
    We present the magnetoresistance (MR) of highly doped monolayer graphene layers grown by chemical vapor deposition on 6H-SiC. The magnetotransport studies are performed on a large temperature range, from TT = 1.7 K up to room temperature. The MR exhibits a maximum in the temperature range 120240120-240 K. The maximum is observed at intermediate magnetic fields (B=26B=2-6 T), in between the weak localization and the Shubnikov-de Haas regimes. It results from the competition of two mechanisms. First, the low field magnetoresistance increases continuously with TT and has a purely classical origin. This positive MR is induced by thermal averaging and finds its physical origin in the energy dependence of the mobility around the Fermi energy. Second, the high field negative MR originates from the electron-electron interaction (EEI). The transition from the diffusive to the ballistic regime is observed. The amplitude of the EEI correction points towards the coexistence of both long and short range disorder in these samples

    Quantum Hall resistance standards from graphene grown by chemical vapor deposition on silicon carbide

    Full text link
    Replacing GaAs by graphene to realize more practical quantum Hall resistance standards (QHRS), accurate to within 10910^{-9} in relative value, but operating at lower magnetic fields than 10 T, is an ongoing goal in metrology. To date, the required accuracy has been reported, only few times, in graphene grown on SiC by sublimation of Si, under higher magnetic fields. Here, we report on a device made of graphene grown by chemical vapour deposition on SiC which demonstrates such accuracies of the Hall resistance from 10 T up to 19 T at 1.4 K. This is explained by a quantum Hall effect with low dissipation, resulting from strongly localized bulk states at the magnetic length scale, over a wide magnetic field range. Our results show that graphene-based QHRS can replace their GaAs counterparts by operating in as-convenient cryomagnetic conditions, but over an extended magnetic field range. They rely on a promising hybrid and scalable growth method and a fabrication process achieving low-electron density devices.Comment: 12 pages, 8 figure

    A graphene electron lens

    Get PDF
    International audienceAn epitaxial layer of graphene was grown on a pre patterned 6H-SiC(0001) crystal. The graphene smoothly covers the hexagonal nano-holes in the substrate without the introduction of small angle grain boundaries or dislocations. This is achieved by an elastic deformation of the graphene by ~0.3% in accordance to its large elastic strain limit. This elastic stretching of the graphene leads to a modification of the band structure and to a local lowering of the electron group velocity of the graphene. We propose to use this effect to focus two-dimensional electrons in analogy to simple optical lenses

    Unexpected high-energy γ emission from decaying exotic nuclei

    Get PDF
    Abstract The N = 52 Ga 83 β decay was studied at ALTO. The radioactive 83Ga beam was produced through the ISOL photofission technique and collected on a movable tape for the measurement of γ-ray emission following β decay. While β-delayed neutron emission has been measured to be 56–85% of the decay path, in this experiment an unexpected high-energy 5–9 MeV γ-ray yield of 16(4)% was observed, coming from states several MeVs above the neutron separation threshold. This result is compared with cutting-edge QRPA calculations, which show that when neutrons deeply bound in the core of the nucleus decay into protons via a Gamow–Teller transition, they give rise to a dipolar oscillation of nuclear matter in the nucleus. This leads to large electromagnetic transition probabilities which can compete with neutron emission, thus affecting the β-decay path. This process is enhanced by an excess of neutrons on the nuclear surface and may thus be a common feature for very neutron-rich isotopes, challenging the present understanding of decay properties of exotic nuclei

    First Evidence of Shape Coexistence in the Ni-78 Region : Intruder 0(2)(+) State in Ge-80

    Get PDF
    The N = 48 Ge-80 nucleus is studied by means of beta-delayed electron-conversion spectroscopy at ALTO. The radioactive Ga-80 beam is produced through the isotope separation on line photofission technique and collected on a movable tape for the measurement of gamma and e(-) emission following beta decay. An electric monopole E0 transition, which points to a 639(1) keV intruder 0(2)(+) state, is observed for the first time. This new state is lower than the 2(1)(+) level in Ge-80, and provides evidence of shape coexistence close to one of the most neutron-rich doubly magic nuclei discovered so far, Ni-78. This result is compared with theoretical estimates, helping to explain the role of monopole and quadrupole forces in the weakening of the N = 50 gap at Z = 32. The evolution of intruder 0(2)(+) states towards Ni-78 is discussed.Peer reviewe

    Hydrothermal activity, functional diversity and chemoautotrophy are major drivers of seafloor carbon cycling

    Get PDF
    Hydrothermal vents are highly dynamic ecosystems and are unusually energy rich in the deep-sea. In situ hydrothermal-based productivity combined with sinking photosynthetic organic matter in a soft-sediment setting creates geochemically diverse environments, which remain poorly studied. Here, we use comprehensive set of new and existing field observations to develop a quantitative ecosystem model of a deep-sea chemosynthetic ecosystem from the most southerly hydrothermal vent system known. We find evidence of chemosynthetic production supplementing the metazoan food web both at vent sites and elsewhere in the Bransfield Strait. Endosymbiont-bearing fauna were very important in supporting the transfer of chemosynthetic carbon into the food web, particularly to higher trophic levels. Chemosynthetic production occurred at all sites to varying degrees but was generally only a small component of the total organic matter inputs to the food web, even in the most hydrothermally active areas, owing in part to a low and patchy density of vent-endemic fauna. Differences between relative abundance of faunal functional groups, resulting from environmental variability, were clear drivers of differences in biogeochemical cycling and resulted in substantially different carbon processing patterns between habitats

    Study of key resonances in the 30P(p,γ)31S reaction in classical novae

    Get PDF
    Among reactions with strong impact on classical novae model predictions, 30P(p,γ)31S is one of the few remained that are worthy to be measured accurately, because of their rate uncertainty, as like as 18F(p,α)15O and 25Al(pγ)26Si. To reduce the nuclear uncertainties associated to this reaction, we performed an experiment at ALTO facility of Orsay using the 31P(3He,t)31S reaction to populate 31S excited states of astrophysical interest and detect in coincidence the protons coming from the decay of the populated states in order to extract the proton branching ratios. After a presentation of the astrophysical context of this work, the current situation of the 30P(p,γ)31S reaction rate will be discussed. Then the experiment set-up of this work and the analysis of the single events will be presented

    Neutron-rich nuclei produced at zero degrees in damped collisions induced by a beam of 18O on a 238U target

    Get PDF
    Cross sections and corresponding momentum distributions have been measured for the first time at zero degrees for the exotic nuclei obtained from a beam of 18O at 8.5 MeV/A impinging on a 1 mg/cm2 238U target. Sizable cross sections were found for the production of exotic species arising from the neutron transfer and proton removal from the projectile. Comparisons of experimental results with calculations based on deep-inelastic reaction models, taking into account the particle evaporation process, indicate that zero degree is a scattering angle at which the differential reaction cross section for production of exotic nuclei is at its maximum. This result is important in view of the new generation of zero degrees spectrometers under construction, such as the S3 separator at GANIL, for example
    corecore