187 research outputs found
Does decentralization strengthen or weaken the state? Authority and social learning in a supple state
We examine how decentralization affects four key aspects of state strength: (i) Authority over territory and conflict prevention, (ii) Policy autonomy and the ability to uphold the law, (iii) Responsive, accountable service provision, and (iv) Social learning. We provide specific reform paths that should lead to strengthening in each. Decentralizing below the level of social cleavages should drain secessionist pressure by peeling away moderate citizens from radical leaders. The regional specificity of elite interests is key. If regional elites have more to lose than gain from national schism, they will not invest in politicians and conflicts that promote secession. Strong accountability mechanisms and national safeguards of minority rights can align local leadersâ incentives with citizensâ, so promoting power-sharing and discouraging local capture or oppression. âFragmentation of authorityâ is a mistaken inference; what decentralization really does is transform politics from top-down to bottom-up, embracing many localities and their concerns. The state moves from a simpler, brittler command structure to one based on overlapping authority and complex complementarity, where government is more robust to failure in any of its parts. Well-designed reform, focusing on services with low economies of scale, with devolved taxation and bail-outs prohibited, should increase public accountability. Lastly, by allowing citizens to become political actors in their own right, the small scale of local politics should promote social learning-by-doing, so strengthening political legitimacy, state-building, and âdemocratic supplenessâ from the grass-roots upwards
Oxidative stress stimulates alpha-tocopherol transfer protein in human trophoblast tumor cells BeWo
alpha-Tocopherol transfer protein (alpha-TTP) has been identified as the major intracellular transport protein for the antioxidant vitamin E (alpha-Tocopherol). Expression of alpha-TTP on the reproductive system has been described both in mouse uterus and lately in the human placenta. The aim of this study was to clarify if placental expression of alpha-TTP can be modified by substances causing oxidative reactions. The human choriocarcinoma cell line BeWo was, therefore, treated with two known pro-oxidants. alpha-TTP expression was determined with immunocytochemistry and evaluated by applying a semiquantitative score. The presence of pro-oxidants in BeWo cells induced alpha-TTP expression. We thus hypothesize that stimulation of alpha-TTP expression by oxidative stress, as this was induced by pro-oxidants, could be part of an antioxidant process occurring in the placenta in the aim of enhancing the supply of alpha-Tocopherol. This process could occur both in normal pregnancies, as well as in pregnancy disorders presented with intensified oxidative stress. In that view, this model is proposed for further oxidative stress studies on trophoblast and placenta, on the grounds of clarifying the role of alpha-Tocopherol in pregnancy physiology and pathophysiology
Competition between water uptake and ice nucleation by glassy organic aerosol particles
Berkemeier T, Shiraiwa M, Poeschl U, Koop T. Competition between water uptake and ice nucleation by glassy organic aerosol particles. Atmospheric Chemistry and Physics. 2014;14(22):12513-12531.Organic aerosol particles play a key role in climate by serving as nuclei for clouds and precipitation. Their sources and composition are highly variable, and their phase state ranges from liquid to solid under atmospheric conditions, affecting the pathway of activation to cloud droplets and ice crystals. Due to slow diffusion of water in the particle phase, organic particles may deviate in phase and morphology from their thermodynamic equilibrium state, hampering the prediction of their influence on cloud formation. We overcome this problem by combining a novel semi-empirical method for estimation of water diffusivity with a kinetic flux model that explicitly treats water diffusion. We estimate timescales for particle deliquescence as well as various ice nucleation pathways for a wide variety of organic substances, including secondary organic aerosol (SOA) from the oxidation of isoprene, alpha-pinene, naphthalene, and dodecane. The simulations show that, in typical atmospheric updrafts, glassy states and solid/liquid core-shell morphologies can persist for long enough that heterogeneous ice nucleation in the deposition and immersion mode can dominate over homogeneous ice nucleation. Such competition depends strongly on ambient temperature and relative humidity as well as humidification rate and particle size. Due to differences in glass transition temperature, hygroscopicity and atomic O/C ratio of the different SOA, naphthalene SOA particles have the highest potential to act as heterogeneous ice nuclei. Our findings demonstrate that kinetic limitations of water diffusion into organic aerosol particles are likely to be encountered under atmospheric conditions and can strongly affect ice nucleation pathways. For the incorporation of ice nucleation by organic aerosol particles into atmospheric models, our results demonstrate a demand for model formalisms that account for the effects of molecular diffusion and not only describe ice nucleation onsets as a function of temperature and relative humidity but also include updraft velocity, particle size and composition
A highâquality functional genome assembly of delia radicum L. (diptera: anthomyiidae) annotated from egg to adult
Abstract Belowground herbivores are overseen and underestimated, even though they can cause significant economic losses in agriculture. The cabbage root fly Delia radicum (Anthomyiidae) is a common pest in Brassica species, including agriculturally important crops, such as oilseed rape. The damage is caused by the larvae, which feed specifically on the taproots of Brassica plants until they pupate. The adults are abovegroundâliving generalists feeding on pollen and nectar. Female flies are attracted by chemical cues in Brassica plants for oviposition. An assembled and annotated genome can elucidate which genetic mechanisms underlie the adaptation of D . radicum to its host plants and their specific chemical defences, in particular isothiocyanates. Therefore, we assembled, annotated and analysed the D . radicum genome using a combination of different nextâgeneration sequencing and bioinformatic approaches. We assembled a chromosomeâlevel D . radicum genome using PacBio and HiâC Illumina sequence data. Combining Canu and 3DâDNA genome assembler, we constructed a 1.3 Gbp genome with an N50 of 242 Mbp and 6 pseudoâchromosomes. To annotate the assembled D . radicum genome, we combined homologyâ, transcriptomeâ and ab initioâprediction approaches. In total, we annotated 13,618 genes that were predicted by at least two approaches. We analysed egg, larval, pupal and adult transcriptomes in relation to lifeâstage specific molecular functions. This highâquality annotated genome of D . radicum is a first step to understanding the genetic mechanisms underlying host plant adaptation. As such, it will be an important resource to find novel and sustainable approaches to reduce crop losses to these pests
Cooling dynamics of a dilute gas of inelastic rods: a many particle simulation
We present results of simulations for a dilute gas of inelastically colliding
particles. Collisions are modelled as a stochastic process, which on average
decreases the translational energy (cooling), but allows for fluctuations in
the transfer of energy to internal vibrations. We show that these fluctuations
are strong enough to suppress inelastic collapse. This allows us to study large
systems for long times in the truely inelastic regime. During the cooling stage
we observe complex cluster dynamics, as large clusters of particles form,
collide and merge or dissolve. Typical clusters are found to survive long
enough to establish local equilibrium within a cluster, but not among different
clusters. We extend the model to include net dissipation of energy by damping
of the internal vibrations. Inelatic collapse is avoided also in this case but
in contrast to the conservative system the translational energy decays
according to the mean field scaling law, E(t)\propto t^{-2}, for asymptotically
long times.Comment: 10 pages, 12 figures, Latex; extended discussion, accepted for
publication in Phys. Rev.
Interactive Responses of Solanum Dulcamara to Drought and Insect Feeding are Herbivore Species-Specific
In nature, plants are frequently subjected to multiple biotic and abiotic stresses, resulting in a convergence of adaptive responses. We hypothesised that hormonal signalling regulating defences to different herbivores may interact with drought responses, causing distinct resistance phenotypes. To test this, we studied the hormonal and transcriptomic responses of Solanum dulcamara subjected to drought and herbivory by the generalist Spodoptera exigua (beet armyworm; BAW) or the specialist Leptinotarsa decemlineata (Colorado potato beetle; CPB). Bioassays showed that the performance of BAW, but not CPB, decreased on plants under drought compared to controls. While drought did not alter BAW-induced hormonal responses, it enhanced the CPB-induced accumulation of jasmonic acid and salicylic acid (SA), and suppressed ethylene (ET) emission. Microarray analyses showed that under drought, BAW herbivory enhanced several herbivore-induced responses, including cell-wall remodelling and the metabolism of carbohydrates, lipids, and secondary metabolites. In contrast, CPB herbivory enhanced several photosynthesis-related and pathogen responses in drought-stressed plants. This may divert resources away from defence production and increase leaf nutritive value. In conclusion, while BAW suffers from the drought-enhanced defences, CPB may benefit from the effects of enhanced SA and reduced ET signalling. This suggests that the fine-tuned interaction between the plant and its specialist herbivore is sustained under drought
JRA3 Electromagnetic Calorimeter Technical Design Report
This report describes the design of the prototype for an Silicon Tungsten electromagnetic calorimeter with unprecedented high granularity to be operated in a detector at the International Linear Collider (ILC). The R&D for the prototype is co-funded by the European Union in the FP6 framework within the so called EUDET project in the years 2006-2010. The dimensions of the prototype are similar to those envisaged for the final detector. Already at this stage the prototype features a highly compact design. The sensitive layers, the Very Front End Electronics serving 64 channels per ASIC and copper plates for heat draining are integrated within 2000 ÎŒm
Deleted in Malignant Brain Tumors 1 (DMBT1) is present in hyaline membranes and modulates surface tension of surfactant
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Production and Equilibration of the Quark-Gluon Plasma with Chromoelectric Field and Minijets
Production and equilibration of quark-gluon plasma are studied within the
color flux-tube model, at the RHIC and LHC energies. Non-Abelian relativistic
transport equations for quarks, antiquarks and gluons, are solved in the
extended phase space which includes coordinates, momenta and color. Before the
chromoelectric field is formed, hard and semihard partons are produced via
minijets which provide the initial conditions necessary to solve the transport
equations. The model predicts that in spite of the vast difference between the
RHIC and LHC incident energies, once the local equilibrium is reached, the
energy densities, the number densities and the temperatures at the two machines
may not be very different from each other. The minijet input significantly
alters the evolution of the deconfined matter, unless the color field is too
strong. For the input parameters used here the equilibration time is estimated
to be fm at RHIC and fm at LHC, measured from the instant
when the two colliding nuclei have just passed through each other. The
temperature at equilibration is found to be MeV at RHIC and MeV at LHC.Comment: version to appear in Phys. Rev. C; discussion enlarged to include
comparison with other models; conclusions unchanged; 14 single-spaced pages +
8 ps figure
- âŠ