67 research outputs found

    Extracellular Hsp72 concentration relates to a minimum endogenous criteria during acute exercise-heat exposure

    Get PDF
    Extracellular heat-shock protein 72 (eHsp72) concentration increases during exercise-heat stress when conditions elicit physiological strain. Differences in severity of environmental and exercise stimuli have elicited varied response to stress. The present study aimed to quantify the extent of increased eHsp72 with increased exogenous heat stress, and determine related endogenous markers of strain in an exercise-heat model. Ten males cycled for 90 min at 50% O2peak in three conditions (TEMP, 20°C/63% RH; HOT, 30.2°C/51%RH; VHOT, 40.0°C/37%RH). Plasma was analysed for eHsp72 pre, immediately post and 24-h post each trial utilising a commercially available ELISA. Increased eHsp72 concentration was observed post VHOT trial (+172.4%) (P<0.05), but not TEMP (-1.9%) or HOT (+25.7%) conditions. eHsp72 returned to baseline values within 24hrs in all conditions. Changes were observed in rectal temperature (Trec), rate of Trec increase, area under the curve for Trec of 38.5°C and 39.0°C, duration Trec ≥ 38.5°C and ≥ 39.0°C, and change in muscle temperature, between VHOT, and TEMP and HOT, but not between TEMP and HOT. Each condition also elicited significantly increasing physiological strain, described by sweat rate, heart rate, physiological strain index, rating of perceived exertion and thermal sensation. Stepwise multiple regression reported rate of Trec increase and change in Trec to be predictors of increased eHsp72 concentration. Data suggests eHsp72 concentration increases once systemic temperature and sympathetic activity exceeds a minimum endogenous criteria elicited during VHOT conditions and is likely to be modulated by large, rapid changes in core temperature

    Consensus recommendations on training and competing in the heat

    Get PDF
    Exercising in the heat induces thermoregulatory and other physiological strain that can lead to impairments in endurance exercise capacity. The purpose of this consensus statement is to provide up-to-date recommendations to optimize performance during sporting activities undertaken in hot ambient conditions. The most important intervention one can adopt to reduce physiological strain and optimize performance is to heat acclimatize. Heat acclimatization should comprise repeated exercise–heat exposures over 1–2 weeks. In addition, athletes should initiate competition and training in an euhydrated state and minimize dehydration during exercise. Following the development of commercial cooling systems (e.g., cooling vests), athletes can implement cooling strategies to facilitate heat loss or increase heat storage capacity before training or competing in the heat. Moreover, event organizers should plan for large shaded areas, along with cooling and rehydration facilities, and schedule events in accordance with minimizing the health risks of athletes, especially in mass participation events and during the first hot days of the year. Following the recent examples of the 2008 Olympics and the 2014 FIFA World Cup, sport governing bodies should consider allowing additional (or longer) recovery periods between and during events for hydration and body cooling opportunities when competitions are held in the heat

    The physiological strain index does not reliably identify individuals at risk of reaching a thermal tolerance limit

    Get PDF
    Purpose The physiological strain index (PSI) was developed to assess individuals' heat strain, yet evidence supporting its use to identify individuals at potential risk of reaching a thermal tolerance limit (TTL) is limited. The aim of this study was to assess whether PSI can identify individuals at risk of reaching a TTL. Methods Fifteen females and 21 males undertook a total of 136 trials, each consisting of two 40-60 minute periods of treadmill walking separated by ~ 15 minutes rest, wearing permeable or impermeable clothing, in a range of climatic conditions. Heart rate (HR), skin temperature (T sk), rectal temperature (T re), temperature sensation (TS) and thermal comfort (TC) were measured throughout. Various forms of the PSI-index were assessed including the original PSI, PSI fixed , adaptive-PSI (aPSI) and a version comprised of a measure of heat storage (PSI HS). Final physiological and PSI values and their rate of change (ROC) over a trial and in the last 10 minutes of a trial were compared between trials completed (C, 101 trials) and those terminated prematurely (TTL, 35 trials). Results Final PSI original , PSI fixed , aPSI, PSI HS did not differ between TTL and C (p > 0.05). However, differences between TTL and C occurred in final T sk , T re-T sk , TS, TC and ROC in PSI fixed , T re , T sk and HR (p < 0.05). Conclusion These results suggest the PSI, in the various forms, does not reliably identify individuals at imminent risk of reaching their TTL and its validity as a physiological safety index is therefore questionable. However, a physiological-perceptual strain index may provide a more valid measure

    Endurance performance is influenced by perceptions of pain and temperature: Theory, applications and safety considerations.

    Get PDF
    Models of endurance performance now recognise input from the brain, including an athlete’s ability to cope with various non-pleasurable perceptions during exercise, such as pain and temperature. Exercise training can reduce perceptions of both pain and temperature over time, partly explaining why athletes generally have a higher pain tolerance, despite a similar pain threshold, compared with active controls. Several strategies with varying efficacy may ameliorate the perceptions of pain (e.g. acetaminophen, transcranial direct current stimulation and transcutaneous electrical stimulation) and temperature (e.g. menthol beverages, topical menthol products and other cooling strategies, especially those targeting the head) during exercise to improve athletic performance. This review describes both the theory and practical applications of these interventions in the endurance sport setting, as well as the potentially harmful health consequences of their use

    Cross Adaptation - Heat and Cold Adaptation to Improve Physiological and Cellular Responses to Hypoxia

    Get PDF
    To prepare for extremes of heat, cold or low partial pressures of O2, humans can undertake a period of acclimation or acclimatization to induce environment specific adaptations e.g. heat acclimation (HA), cold acclimation (CA), or altitude training. Whilst these strategies are effective, they are not always feasible, due to logistical impracticalities. Cross adaptation is a term used to describe the phenomenon whereby alternative environmental interventions e.g. HA, or CA, may be a beneficial alternative to altitude interventions, providing physiological stress and inducing adaptations observable at altitude. HA can attenuate physiological strain at rest and during moderate intensity exercise at altitude via adaptations allied to improved oxygen delivery to metabolically active tissue, likely following increases in plasma volume and reductions in body temperature. CA appears to improve physiological responses to altitude by attenuating the autonomic response to altitude. While no cross acclimation-derived exercise performance/capacity data have been measured following CA, post-HA improvements in performance underpinned by aerobic metabolism, and therefore dependent on oxygen delivery at altitude, are likely. At a cellular level, heat shock protein responses to altitude are attenuated by prior HA suggesting that an attenuation of the cellular stress response and therefore a reduced disruption to homeostasis at altitude has occurred. This process is known as cross tolerance. The effects of CA on markers of cross tolerance is an area requiring further investigation. Because much of the evidence relating to cross adaptation to altitude has examined the benefits at moderate to high altitudes, future research examining responses at lower altitudes should be conducted given that these environments are more frequently visited by athletes and workers. Mechanistic work to identify the specific physiological and cellular pathways responsible for cross adaptation between heat and altitude, and between cold and altitude, is warranted, as is exploration of benefits across different populations and physical activity profiles
    • …
    corecore