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Abstract

Background and Objective Exercise in hot environments impairs endurance performance. Cooling interventions can attenuate
the impact of heat stress on performance, but the influence of an exercise protocol on the magnitude of performance benefit
remains unknown. This meta-analytical review compared the effects of pre- and per-cooling interventions on performance
during self-paced and constant workload exercise in the heat.

Methods The study protocol was preregistered at the Open Science Framework (https://osf.io/wqjb3). A systematic literature
search was performed in PubMed, Web of Science, and MEDLINE from inception to 9 June, 2023. We included studies that
examined the effects of pre- or per-cooling on exercise performance in male individuals under heat stress (> 30 °C) during
self-paced or constant workload exercise in cross-over design studies. Risk of bias was assessed using the Cochrane Risk of
Bias Tool for randomized trials.

Results Fifty-nine studies (n =563 athletes) were identified from 3300 records, of which 40 (n=370 athletes) used a self-
paced protocol and 19 (n=193 athletes) used a constant workload protocol. Eighteen studies compared multiple cooling
interventions and were included more than once (total n =386 experiments and n =832 paired measurements). Sixty-seven
experiments used a pre-cooling intervention and 19 used a per-cooling intervention. Average ambient conditions were 34.0
°C [32.3-35.0 °C] and 50.0% [40.0-55.3%] relative humidity. Cooling interventions attenuated the performance decline in
hot conditions and were more effective during a constant workload (effect size [ES]=0.62, 95% confidence interval [CI]
0.44-0.81) compared with self-paced exercise (ES =0.30, 95% CI 0.18-0.42, p=0.004). A difference in performance out-
comes between protocols was only observed with pre-cooling (ES=0.74, 95% CI 0.50-0.98 vs ES=0.29, 95% C1 0.17-0.42,
p=0.001), but not per-cooling (ES=0.45, 95% CI1 0.16-0.74 vs ES=0.35, 95% CI1 0.01-0.70, p =0.68).

Conclusions Cooling interventions attenuated the decline in performance during exercise in the heat, but the magnitude of
the effect is dependent on exercise protocol (self-paced vs constant workload) and cooling type (pre- vs per-cooling). Pre-
cooling appears to be more effective in attenuating the decline in exercise performance during a constant workload compared
with self-paced exercise protocols, whereas no differences were found in the effectiveness of per-cooling.
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Pre-cooling is more effective in constant workload exer-
cise compared with self-paced exercise in the heat.

Per-cooling provides comparable benefits for constant
and self-paced exercise in the heat.

Substantial differences in the magnitude of performance
benefits across different types of cooling interventions
were observed, which emphasizes the need for more
research to determine the most effective type of cooling
under specific exercise conditions (e.g., type, duration).

1 Introduction

Exercise in the heat results in internal heat storage, impair-
ment of athletic performance [1], and an increased risk for
heat-related illness [2, 3]. Heat mitigation strategies, such as
cooling interventions and heat acclimation, have been shown
to attenuate the development of thermal strain and improve
exercise performance in the heat [4, 5]. Heat acclimation is
regarded as the primary intervention to undertake prior to
exercise in the heat [1], but requires a dedicated time frame
to induce physiological adaptations. In contrast, cooling
interventions can provide an immediate reduction in ther-
mal strain by increasing heat storage capacity directly prior
to exercise (pre-cooling) or attenuating the increase in core
temperature during exercise (per-cooling). Cooling interven-
tions can be applied externally (i.e., cooling garments, cold
water immersion, or fanning) and internally (i.e., cold fluid
or ice ingestion). Over the past decade, several reviews and
meta-analyses have demonstrated that both pre-cooling and
per-cooling can effectively attenuate the decline in exercise
performance in the heat [6-9]. However, a limitation of pre-
vious work is that all available evidence was pooled and
the type of exercise protocol (i.e., self-paced and constant
workload exercise) was not factored in when evaluating the
performance benefits of cooling. This may have led to over-
or under-estimation of the cooling-induced performance
benefits as the pooled outcomes may not be representative
of exercise in a sport-specific setting (e.g., marathon run-
ning, individual time trial cycling, team sports).
Endurance performance can be assessed in laboratory
settings using different protocols. The objective of self-
paced exercise protocols is to complete a known distance
or amount of work as quickly as possible, or maintain the
highest workload for a given time, with the ability to adjust
the workload based on maintaining an optimal performance

intensity [1]. In contrast, constant workload protocols adopt
a set work rate and individual pacing cannot occur beyond
adjusting cadence or ceasing exercise. These are typically
used to isolate independent variables (e.g., cooling interven-
tion) in a well-controlled environment to examine their effect
on dependent variables (e.g., volitional fatigue). Although
both types of exercise protocols can reliably assess changes
in exercise performance (i.e., sensitivity) [10, 11] and have
external validity (i.e., representative for race conditions),
the magnitude of performance change may differ markedly,
with changes in time to volitional fatigue stemming from
an acute intervention (e.g., heat or hypoxia) typically being
much larger than those of self-paced exercise [10, 12, 13].

The aim of this systematic review and meta-analysis was
to compare the effects of cooling interventions on perfor-
mance outcomes during self-paced and constant workload
exercise in the heat by standardizing the impact of cooling
on performance and presenting effect sizes (ESs). Second,
we evaluated the impact of the type of cooling (i.e., pre-
cooling vs per-cooling) on exercise performance between
exercise protocols. We hypothesized that cooling strategies
would be equally effective between self-paced and constant
workload exercise.

2 Methods
2.1 Search Strategy

This review was performed according to the Preferred
Items for Systematic Reviews and Meta-Analysis—Protocol
(PRISMA-P) statement [14] and was pre-registered with the
Open Science Framework Registries (https://osf.io/wqjb3).
A systematic literature search was conducted in PubMed,
Web of Science, and MEDLINE. Three main search themes
were used, which included exercise, cooling interventions,
and an exercise performance outcome measure. Titles and
abstracts were searched in addition to using Medical Subject
Heading terms in PubMed. Words within the themes were
combined using the Boolean operator “OR”, while the three
themes were connected by “AND” (Table 1 of the Electronic
Supplementary Material [ESM]). The final search was per-
formed from inception up to 9 June, 2023. Search results
from these databases were combined and duplicates removed
using Mendeley Reference Management Software (Else-
vier, London, UK). Two reviewers (T.M.K and C.C.W.G.B)
screened the article titles and abstracts for inclusion; in
the case of disagreement between those reviewers, a third
reviewer (T.M.H.E) was consulted and decided on inclu-
sion or exclusion. The reference list of included articles was
screened for any additional articles that were missed by the
literature search.
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2.2 Inclusion Criteria

Studies were included if they (1) applied a pre-cooling or
a per-cooling strategy and adopted a crossover design; (2)
used a self-paced or a constant workload exercise protocol;
(3) were performed in hot ambient conditions (>30 °C); (4)
included data reported separately for male and female indi-
viduals; and (5) reported at least one outcome parameter
related to exercise performance. Studies were excluded if
they (1) adopted a combination of pre- and per-cooling inter-
ventions and (2) were scored with a high risk of bias [15].

2.3 Study Classification

All included studies were classified into two groups based on
the exercise protocol: self-paced or constant workload exer-
cise. Self-paced exercise protocols were defined as exercise
protocols that consisted of a fixed distance, time, or work to
be completed and allowed participants to change the speed
or workload during the trial. Constant workload protocols
were defined as exercise protocols that were performed
at a workload equivalent to a percent of maximal aerobic
power (e.g., 60% of maximal oxygen consumption [VO,,,,.1)
or peak workload (e.g., 70% of peak power output), or a
specified rating of perceived exertion (RPE) (e.g., RPE of
15) until volitional fatigue/exhaustion. Studies adopting a
warm-up and those where a pre-loaded exercise trial was
performed at a different exercise protocol than the actual
performance trial were classified based on the characteris-
tics of the performance trial. For example, if a pre-loaded
constant workload trial preceded a self-paced exercise trial,
only the data from the self-paced trial were included in the
meta-analysis.

Pre-cooling was defined as any cooling intervention
applied either prior to the performance trial (i.e., at rest,
warm-up, or pre-loaded trial) or during exercise breaks (e.g.,
15-min half-time break). If cooling was applied both prior
to the trial and during the half-time break, all data from
the performance trial were used. However, if cooling was
only applied during half-time, data from the second half
were extracted, given that the first half was similar in both
the control and intervention trials (i.e., randomized design
and comparable environmental conditions). Per-cooling was
defined as any cooling intervention that was applied dur-
ing exercise as part of the performance trial. Studies that
investigated more than one cooling intervention in sepa-
rate trials were included more than once. Studies adopt-
ing multiple cooling interventions at the same time (e.g.,
cooling vest and cold/ice water ingestion) were classified as
mixed-method cooling. We did not distinguish between or
exclude non-thermal cooling methods as it has been shown
to improve exercise performance [16]. We therefore also

included menthol-based cooling interventions in our sys-
tematic review and meta-analysis.

2.4 Risk of Bias Analysis

Risk of bias was assessed independently by two researchers
(T.M.K and C.C.W.G.B) according to the Cochrane Risk of
Bias Tool for randomized trials to assess the methodological
quality of the included studies. After the initial assessment,
the risk of bias of both researchers was compared and in
cases where a consensus was not reached, the evaluation of
a third researcher (T.M.H.E) was decisive.

2.5 Data Extraction

Data were extracted from each study to a predefined Excel
sheet (Microsoft Excel, version 16.73). This included: (1)
article information (author name, year, title, study design);
(2) participant characteristics (age, sex, and VO,..); (3)
study characteristics (number of participants, ambient condi-
tions [ambient temperature, relative humidity, and air flow],
exercise characteristics [running, cycling], exercise protocol,
exercise duration, type of cooling intervention, timing of
cooling,); and (4) exercise performance data (mean =+ stand-
ard deviation). For self-paced exercise, relevant outcome
parameters included finish time (in seconds), total distance
covered (in meters), mean power output (in Watts), total
work done (in kilojoules), or peak power output (in Watts).
A single measure was selected when multiple power output
outcome measures were reported, prioritized as mean power
output, total work done, and peak power output. For con-
stant workload exercise, outcome measures included time to
exhaustion (in seconds), mean power output (in Watts), total
work done (in kilojoules), or peak power output (in Watts).
A single measure was selected when multiple power output
outcome measures were reported, prioritized as mean power
output, total work done and peak power output. In the case of
missing data, only the available data were analyzed and pre-
sented. In case data were not explicitly provided in the text,
but only in a figure, data were extracted using a validated
graphical software program (WebPlotDigitizer version 4.5;
Automeris LLC, Pacifica, CA, USA) by a single experienced
researcher [17, 18].

2.6 Data Synthesis and Analysis

Data analysis was performed on raw data (means, standard
deviation, and sample size) using Review Manager (ver-
sion 5.4), in line with the Cochrane guidelines. For all
included studies, the standardized mean difference was
calculated as the Hedges’ ES (ES =difference in outcome
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between conditions/standard deviation of outcome among
participants) with a corresponding 95% confidence inter-
val (CI) [19]. The magnitude of Hedges’ g was interpreted
as: <0.2, trivial; 0.2—-0.49, small effect; 0.5-0.79, mod-
erate effect; > 0.8, large effect [20]. Heterogeneity was
assessed using I? statistics with <25% being considered
low heterogeneity and > 75% high heterogeneity [21].
A fixed-effects model was used to calculate the pooled
weighted average ES to correct for differences in the sam-
ple size between studies by using the inverse-variance
weighted average method [22]. Stratified analyses were
also performed to compare the effect of cooling type (pre-
vs per-cooling) between self-paced and constant workload
exercise protocols. Exploratory analyses were additionally
performed to assess the impact of exercise duration on
the ES. Potential publication bias was assessed by visual
inspection of funnel plot asymmetry. All data were pre-
sented as mean =+ standard deviation. To assess between-
study normality of data, a Kolmogorov—Smirnov test was
performed; in the case of non-normality, the median with
interquartile range was reported. The significance level for
all statistical tests was set at p <0.05. Data analyses on the
ESs were conducted using Review Manager, whereas pub-
lication bias was assessed using Rstudio (version 1.4.1106;
packages: tidyverse, meta, metafor).

3 Results
3.1 Participants and Included Studies

The literature search identified 3300 articles after the
removal of duplicates. After the initial title and abstract
screening and subsequent full-text screening, 61 studies
complied with our inclusion criteria, of which two [23,
24] were excluded owing to a high risk of bias because
of missing data (Fig. 1). In total, 59 studies (n =563 ath-
letes, age: 24.0 [21.0-26.0] years, VOye,: 55.8 £6.0 mL
kg~! min~!) were included in the meta-analysis, of which
40 studies (n =370 athletes) comprised a self-paced exer-
cise protocol [25—-64] (Table 1) and 19 studies (n =193
athletes) comprised a constant workload protocol [65-83]
(Table 2). A total of 18 studies compared multiple cool-
ing interventions and were therefore included more than
once. This resulted in 86 experiments (n =832 paired
measurements) in which exercise performance was com-
pared between the control and cooling conditions. Almost
all studies were conducted in an indoor laboratory setting
(n=56; 95%). Average ambient conditions were 34.0 °C
[32.3-35.0 °C] and 50.0% [40.0-55.3%] relative humid-
ity and did not differ between self-paced and constant
workload studies (p=0.11 and p =0.49, respectively).

Furthermore, 22 out of 59 studies (37%) reported informa-
tion on airflow, which was 2.1+ 1.5 m s~! on average and
did not differ between study protocols (p =0.40).

3.2 Risk of Bias Analysis

A few outliers and little asymmetry were observed in the
funnel plots for the self-paced and constant workload exer-
cise protocol studies (Fig. 2). The risk of bias analysis
revealed that 98% of included studies had “some concerns”
(Tables 3, 4). This mainly related to missing information on
the concealment of the allocation sequence until participants
were assigned to an intervention (i.e., Domain 1) as well
as missing information on whether a pre-specified analysis
plan was used or not (i.e., Domain 5). The risk of bias was
comparable between the self-paced and constant workload
exercise protocol studies.

3.3 Self-Paced Exercise Studies

Fifty-nine experiments (exercise duration: 40.0 [27.0-60.0]
minutes) were available for self-paced exercise performance
analysis, of which 51 used a pre-cooling intervention and
eight used a per-cooling intervention. Mixed-method cooling
(25.0%), cooling vests (18.7%), and cold/ice water ingestion
(14.9%) were most frequently adopted as cooling strategies
(Fig. 1 of the ESM). The median weighted improvement
in self-paced exercise performance corresponded to an
ES=0.30,95% CI 0.18-0.42.

Pre-cooling was applied prior to a time trial (19 out of 51
experiments) or an intermittent sprint protocol (32 out of 51
experiments), whereas per-cooling was predominantly used
during a time trial (seven out of eight experiments). The
improvement in self-paced exercise performance was similar
for pre-cooling (ES =0.29, 95% CI 0.17-0.42, Fig. 3) and
per-cooling (ES=0.35,95% CI10.01-0.70, Fig. 4, p=0.74).
We also observed a large variability in the magnitude of the
ES across cooling strategies, with no benefits from a cooling
collar (ES=0.00, 95% CI—0.92 to 0.92) or small benefits
from cold water immersion (ES=0.47, 95% CI 0.15-0.80)
for pre-cooling studies (Fig. 3), to large effects using limb
cooling (ES=1.63, 95% CI 0.45-2.81) as a per-cooling
intervention (Fig. 4). Finally, no statistical heterogeneity
was observed for pre- and per-cooling subgroups (I =0%,
p=1.00 and >=0%, p=0.55, respectively).

3.4 Constant Workload Exercise Studies

Twenty-seven experiments (exercise duration: 33.6 +22.8
min) were available for a constant workload exercise per-
formance analysis, of which 16 experiments used a pre-
cooling intervention and 11 experiments used a per-cooling
intervention. Cold/ice water ingestion (20.0%), cooling vests
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Fig. 1 Flow chart of the systematic search and study selection process

(19.6%), and menthol use (17.7%) were most frequently
adopted as cooling strategies (Fig. 1 of the ESM). The
median weighted improvement in constant workload exercise

Reference check of systematic reviews
“snowballing” (n=1)

Risk of bias: high risk studies (n = 2)

performance was ES =0.62, 95% CI 0.44-0.81. Pre-cooling
was applied prior to time to exhaustion (13 out of 16 experi-
ments), an intermittent exercise (1 out of 16 experiments),
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T. M. van de Kerkhof et al.

Table 2 (continued)

Lab/field study

Airflow

Type of cooling Method of cooling Ambient conditions

Type of exercise (primary
outcome measure)

Age (years) VO, (mLkg™!

Study

min~') or fitness

level

Lab, indoor

34.9 °C/40.6% RH  Unknown

Menthol mouth rinse

Cycling to exhaustion at 16 Per-cooling

53.9+69

20+1

Parton et al. 2020

(25 mL every 10 min;

RPE/’hard or very hard’
(time to exhaustion)

11) [73]

(n

31.8 °C) during whole

trial

Palm cooling device during 30 °C/50% RH

Lab, indoor

Unknown

Running to exhaustion at Per-cooling

53.8+5.2

23+4

Scheadler et al. 2013

whole trial

12) [74]

(n

75% VO, na (time to
exhaustion)

Lab, indoor

Unknown

Neck cooling collar (stored 32.2 °C/53% RH

Per-cooling

Running to exhaustion at

56.2+9.2

26+2

Tyler et al. 2011

at—80 °C for 24-28 h,

8) [75]

(n

70% VO, 1. (time to
exhaustion)

10 min in ambient condi-
tions) during whole trial

BM body mass, lab laboratory, min minutes, PCM phase change material, RH relative humidity, RPE rate of perceived exertion, VO,,, .. maximal oxygen consumption, W, waximal workload

or a fixed RPE (2 out of 16 experiments) protocol. Per-cool-
ing was only used during one time-to-exhaustion protocol.
Constant workload exercise performance improvements did
not differ for pre-cooling (ES =0.74, 95% CI 0.50-0.98)
(Fig. 5) versus per-cooling (ES=0.45, 95% CI 0.16-0.74
(Fig. 6), p=0.13). Nevertheless, the magnitude of the ES
differed across cooling strategies, with no benefits of limb
per-cooling (ES= —0.18, 95% CI—0.98 to 0.74) to large
benefits of a cooling vest during pre-cooling (ES=0.81, 95%
CI 0.27-1.35) or per-cooling interventions (ES=1.15,95%
CI0.30-2.01) (Figs. 5, 6). Statistical heterogeneity was only
observed for pre-cooling (I*=62%, p <0.001) studies and
not for per-cooling (I>=36%, p=0.11).

3.5 Self-Paced Versus Constant Workload Exercise
Studies

The type of exercise protocol impacted the magnitude of
performance benefits following cooling interventions, with
a smaller improvement following self-paced versus con-
stant workload exercise (ES=0.30, 95% CI 0.18-0.42 vs
ES=0.62, 95% CI 0.44-0.81, p=0.004). Interestingly, the
difference in performance improvement between self-paced
and constant workload exercise was only observed with
pre-cooling interventions (ES =0.29, 95% CI 0.17-0.42 vs
ES=0.74,95% C1 0.50-0.98, p=0.001, Fig. 2 of the ESM),
but not with per-cooling interventions (ES =0.35, 95% CI
0.01-0.70 vs ES=0.45, 95% CI1 0.16-0.74, p=0.68, Fig. 3
of the ESM). Figure 7 provides a graphical summary of the
results. Further stratification for exercise duration revealed
that differences in the effectiveness of pre-cooling between
self-paced and constant workload studies were larger for
exercise protocols with a short-to-medium duration (<40
min) [ES=0.26, 95% CI 0.09-0.43 vs ES=0.90, 95% CI
0.62-1.19, p<0.001, Fig. 4 of the ESM). However, this
effect was not present for protocols with a medium-to-
long duration (>20 min) [ES=0.30, 95% CI 0.16-0.43 vs
ES=0.43,95% CI 0.13-0.73, p=0.44, Fig. 5 of the ESM)
or medium duration only (20-40 min) [ES=0.25, 95% CI
0.05-0.45 vs ES=0.47, 95% CI 0.04-0.91, p=0.36, Fig. 6
of the ESM).

4 Discussion

The purpose of this meta-analytical review was to compare
the magnitude of the performance effect from pre- and per-
cooling on self-paced and constant workload exercise per-
formance. For this purpose, data from 40 self-paced and 19
constant workload studies were pooled, representing perfor-
mance outcomes of 832 paired measurements. We found that
pre-cooling provided less performance enhancement dur-
ing self-paced compared with constant workload exercise
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Fig.2 Funnel plot of included studies separated for self-paced (top
figures; A and B) and constant workload (bottom figures; C and D)
exercise performance; data are also separated for pre-cooling (left fig-
ures; A and C) and per-cooling (right figures; B and D). A few outli-

in the heat (ES=0.29, 95% CI10.17, 0.42 vs ES=0.74,95%
CI 0.50-0.98), whereas no difference in performance was
noted for per-cooling across exercise protocols (ES =0.35,
95% CI 0.01-0.70 vs ES=0.45, 95% CI 0.16-0.74). We
also observed a large heterogeneity in the benefits of cool-
ing interventions within exercise protocols. These findings
have important implications for competitive athletes as the
performance benefits of pre-cooling during self-paced exer-
cise may be less than previously assumed.

Cooling interventions did not produce similar perfor-
mance benefits for self-paced and constant workload exer-
cise in the heat. It was previously suggested that the type of
exercise protocol may impact the magnitude of performance

Effect size (SMD)

ers are observed within figures B, C, and D. The vertical dotted line
represents the weighted average effect size of all included studies. SE
standard error, SMD standardized mean difference

benefits [10, 11]. To account for these methodological dif-
ferences, we calculated Hedges’ g rather than a percent-
age improvement, so this could not explain our findings.
Alternatively, the duration of the exercise protocol may have
contributed to this finding as previous studies suggested
that pre-cooling interventions are predominantly effec-
tive for an exercise duration of <40 min [6, 84]. Indeed,
longer protocols (i.e.,>40 min) were more common in
self-paced compared with constant workload studies (47%
vs 34% of included experiments), but exclusion of these
studies did not alter the outcomes of our analysis (Fig. 4
of the ESM). We also observed that the constant workload
studies with the largest attenuation of decline in exercise



T. M. van de Kerkhof et al.

Table 3 Risk of bias, self-paced studies
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Table 4 Risk of bias, constant workload studies

randomization
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performance (i.e.,>50%) used the shortest exercise proto-
col (i.e., <20 min) [65, 76, 78]. Stratified analyses without
these studies resolved the statistical significance between
self-paced and constant workload exercise protocols (Figs. 5
and 6 of the ESM), but the ES of the effectiveness of pre-
cooling remained substantially higher for constant workload
studies (ES=0.25, 95% C1 0.05-0.45 vs ES=0.47,95% CI
0.04-0.91). These findings indicate that the performance
benefits following pre-cooling in self-paced versus constant
workload protocols are mediated by exercise duration, with
differences mainly present during shorter exercise protocols.

Other explanations for the observed differences may
relate to exercise and intervention characteristics. For
example, thermal perception is known to impact exer-
cise performance in the heat [85], whereas the magnitude
of this effect may be exercise and intervention depend-
ent. Furthermore, the absolute workload, and thus heat

production, is likely higher during self-paced exercise com-
pared with constant workload exercise, which could lead
to a greater heat storage and associated increments in core
temperature, compared with constant workload exercise in
comparable environmental conditions. The adopted cool-
ing interventions may not have been powerful enough to
compensate for the high rate of metabolic heat production
during self-paced protocols. However, mixed-method cool-
ing was more often applied to self-paced versus constant
workload experiments (25.0% vs 5.8%, Fig. 1 of the ESM)
and we have previously demonstrated that this type of cool-
ing exerts the strongest cooling and performance effects
[1, 5]. The cooling strategy that was used does, therefore,
not explain our findings. This also applies to airflow, as
limited or no airflow could overestimate the benefits of
cooling [86], but no differences in airflow characteristics
were found between protocols.
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«Fig.3 Forest plot summarizing the effects of pre-cooling on self-
paced exercise performance (effect size [ES] in Hedges’ g), stratified
for cooling interventions and sorted by effect size. The dots represent
the ES; the diamonds represent the weighted average ES; the error
bars indicate the 95% confidence interval (CI). Studies that used mul-
tiple cooling trials were included more than once. CWI cold water
immersion, LCWI lower limb cold water immersion, WCWI whole-
body cold water immersion

The observation that pre-cooling has different benefits on
self-paced compared with constant workload exercise per-
formance has important practical implications. The quantifi-
cation of pre-cooling specific performance benefits that were
proposed in previous meta-analyses [8, 87] cannot be trans-
lated to self-paced exercise settings, as this overestimated
the true effect due to the inclusion of constant-workload
studies. Instead, exercise protocol and cooling intervention-
specific estimates, as presented in our meta-analysis, provide
a more accurate quantification of cooling-induced perfor-
mance benefits. It is also important to emphasize that the
lower effectiveness of pre-cooling in self-paced exercise tri-
als does not disqualify the intervention by itself. After all, a
statistically significant performance benefit (ES =0.29, 95%
CI 0.17-0.42) was found for self-paced exercise protocols
when using any pre-cooling intervention prior to exercis-
ing in the heat compared with a control condition without
cooling. Hence, the use of pre-cooling strategies, such as
a mixed-method intervention (ES=0.33), a cooling vest
(ES=0.27), or ice slurry ingestion (ES=0.11), does pro-
vide a performance benefit during self-paced exercise under
heat stress. It is also important to highlight that the magni-
tude of performance benefits was highly context specific,
depending on the exercise protocol and the type of cooling,
given the large range in ES across different cooling interven-
tions (Fig. 3). Furthermore, in some sports (e.g., marathon
running, long-distance cycling), a hybrid pacing strategy is
adopted, with a near to constant-workload approach. For
optimal laboratory-to-field translation of the ergogenic
effects of cooling on performance, the characteristics of the
sport and cooling type need both to be considered.

We also found that per-cooling provided comparable
performance benefits for self-paced and constant workload
exercise protocols. This finding further reinforces the use
of per-cooling strategies during competition, as it remains
less often applied compared with pre-cooling owing to chal-
lenges with practical implementation and the additional
weight of a cooling garment [88, 89]. A recent study [90]
described practical pre-, per-, and post-cooling methods

for racewalking and rugby competition during the Tokyo
2020 Olympics. In both sports, a combination of per-cooling
methods was allowed and could be used by athletes during
competition. Furthermore, the combination of pre- and per-
cooling interventions may be superior to the effectiveness of
the cooling interventions in isolation [5], but this could not
be addressed in the present analysis because of the limited
number of studies that adopted a combination of pre- and
per-cooling.

Participants in the included studies had a VO,
of ~56 mL kg~! min~!. A previous study [91] showed that
the VO,,,.. of elite male athletes ranged between 59 and
77 mL kg~! min~!. As higher aerobic fitness levels have
been associated with better thermoregulatory control [92,
93], elite athletes might experience smaller benefits from
cooling interventions than we reported, given that they may
better cope with heat. In contrast, it has been shown that 98%
of elite athletes experience a performance decrement dur-
ing exercise in hot and humid versus temperate conditions
[94]. These observations underline the potential of pre- and
per-cooling as valuable heat mitigation strategies for both
amateur and elite athletes.

A major strength of this study is the large number of
included experiments (n=_86 with 832 paired measure-
ments), as well as the comparison of performance benefits
between distinct exercise protocols and the impact of the
different pre- and per-cooling interventions on this associa-
tion. However, some limitations should be considered. First,
we excluded 11 studies that combined a constant workload
and a self-paced exercise protocol because it was impos-
sible to distinguish the direct effect of cooling on either of
the exercise protocols. Second, only data from male indi-
viduals were used within this review as very few studies
report performance data in female participants. Caution must
therefore be used when inferring results from these studies
in male individuals directly to female individuals, as female
individuals have a limited evaporative capacity at high levels
of heat production due to sex-mediated differences in sweat
gland output [95]. Given the under-representation of female
individuals in exercise science, future studies and a meta-
analysis on the benefits of cooling interventions on perfor-
mance benefits of female athletes during exercise in the heat
are warranted. Finally, insufficient data were available to
perform stratified analyses for cooling type, cooling dose,
exercise type, and training status, thus future meta-analyses
should take this into account.
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Fig.4 Forest plot summarizing the effects of per-cooling on self- ES; the diamonds represent the weighted average ES; the error bars
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Fig.5 Forest plot summarizing the effects of pre-cooling on constant resent the ES; the diamonds represent the weighted average ES; the
workload exercise performance (effect size [ES] in Hedges’ g), strati- error bars indicate the 95% confidence interval (CI). Studies that used
fied for cooling interventions and sorted by effect size. The dots rep- multiple cooling trials were included more than once
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Fig.6 Forest plot summarizing the effects of per-cooling on con-
stant workload exercise performance (effect size [ES] in Hedges’ g),
stratified for cooling interventions and sorted by effect size. The dots

Exercise performance

represent the ES; the diamonds represent the weighted average ES; the
error bars indicate the 95% confidence interval (CI). Studies that used
multiple cooling trials were included more than once
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Fig.7 Graphical summary: effectiveness of pre- and per-cooling
strategies on performance outcomes of self-paced versus constant
workload exercise protocols. Pre-cooling was more effective for
constant workload versus self-paced exercise, whereas no differ-
ences were found for per-cooling strategies. The effectiveness of dif-

ferent cooling techniques was also explored. The magnitude of the
effect was classified as: <0.0=negative (—), 0.0-0.19=trivial (=),
0.2-0.49=small (+), 0.5-0.79=moderate (++), and>0.8=Ilarge
(+++). ES effect size, NA not available. Created with BioRender.
com
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5 Conclusions

Cooling interventions attenuate the decline in performance
during exercise in the heat, but the magnitude of the effect
is dependent on the exercise protocol (self-paced vs con-
stant workload) and type of cooling (pre- vs per-cooling).
Pre-cooling appears to be more effective during a constant
workload compared with self-paced exercise protocols,
whereas no differences were found in the effectiveness of
per-cooling. We also observed substantial heterogeneity in
the magnitude of performance benefits across different type
of cooling interventions, thus additional studies regarding
which type of cooling is most effective under specific exer-
cise conditions (e.g., type, duration) are warranted.
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