13 research outputs found

    Salmonella enterica serovar Enteritidis biofilm lifestyle induces lower pathogenicity and reducesinflammatory response in a murine model compared to planktonic bacteria

    Get PDF
    Salmonella enterica serovar Enteritidis (S. Enteritidis) is the most frequent serovar involved in human salmonellosis. It has been demonstrated that about 80% of infections are related to biofilm formation. There is scant information about the pathogenicity of S. Enteritidis and its relationship to biofilm production. In this regard, this study aimed to investigate the differential host response induced by S. Enteritidis biofilm and planktonic lifestyle. To this purpose, biofilm and planktonic bacteria were inoculated to BALB/c mice and epithelial cell culture. Survival studies revealed that biofilm is less virulent than planktonic cells. Reduced signs of intestinal inflammation and lower bacterial translocation were observed in animals inoculated with Salmonella biofilm compared to the planktonic group. Results showed that Salmonella biofilm was impaired for invasion of non-phagocytic cells and induces a lower inflammatory response in vivo and in vitro compared to that of planktonic bacteria. Taken together, the outcome of Salmonella–host interaction varies depending on the bacterial lifestyle.Fil: Giacomodonato, Mónica Nancy. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Sarnacki, Sebastian Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Aya Castañeda, Maria del Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Garófalo, Ailín N.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Betancourt, Diana M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Cerquetti, Maria Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Noto Llana, Mariangeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentin

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Salmonella Enteritidis foodborne infection induces altered placental morphometrics in the murine model

    No full text
    Introduction: Salmonella foodborne disease during pregnancy causes a significant fetal loss in domestic livestock and preterm birth, chorioamnionitis and miscarriage in humans. These complications could be associated with alterations in placental structure. This study was aimed to determine how a low dose of Salmonella Enteritidis during late gestation affects placental histomorphometric in mice. Methods: We used a self-limiting enterocolitis murine model. BALB/c pregnant animals received a low dose of Salmonella Enteritidis (3–4 x 102 CFU/mouse) on gestational day (GD) 15. At day 3 post infection bacterial loads, serum cytokines expression and placental histomorphometrics parameters were analyzed. Results: We found that a sub-lethal infection with Salmonella induced a significant drop in fetal weight -to-placental weight-ratio and an increase in the placental coefficient. After bacterial inoculation maternal organs were colonized, inducing placental morphometric alterations, including increased placental thickness, reduced surface area, and diminished major and minor diameters. Also, foci of necrosis accompanied by acute leukocyte infiltration in decidual zone, reduction of vascular spaces and vascular congestion in labyrinth zone, were also evident in placentas from infected females on GD 18. Our data shows that placentas from infected mothers are phenotypically different from control ones. Furthermore, expression of IFN-gamma and IL-6 was up regulated in response to Salmonella in maternal serum. Discussion: Our findings demonstrate that a low dose of Salmonella during late gestation alters the placental morphometry leading to negative consequences on pregnancy outcome such as significant reduction in fetal body weight.Fil: Betancourt, Diana M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Noto Llana, Mariangeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Sarnacki, Sebastian Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Cerquetti, Maria Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Monzalve, Liliana Salazar. Universidad del Valle; ColombiaFil: Pustovrh, María C.. Universidad del Valle; ColombiaFil: Giacomodonato, Mónica Nancy. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentin

    Mutation of Agr Is Associated with the Adaptation of Staphylococcus aureus to the Host during Chronic Osteomyelitis

    Get PDF
    Selection pressures exerted on Staphylococcus aureus by host factors may lead to the emergence of mutants better adapted to the evolving conditions at the infection site. This study was aimed at identifying the changes that occur in S. aureus exposed to the host defense mechanisms during chronic osteomyelitis and evaluating whether these changes affect the virulence of the organism. Genome assessment of two S. aureus isolates collected 13 months apart (HU-85a and HU-85c) from a host with chronic osteomyelitis was made by whole genome sequencing. Agr functionality was assessed by qRT-PCR. Isolates were tested in a rat model of osteomyelitis and the bacterial load (CFU/tibia) and the morphometric osteomyelitic index (OI) were determined. The ability of the isolates to trigger the release of proinflammatory cytokines was determined on macrophages in culture. Persistence of S. aureus within the host resulted in an agrC frameshift mutation that likely led to the observed phenotype. The capacity to cause bone tissue damage and trigger proinflammatory cytokines by macrophages of the agr-deficient, unencapsulated derivative (HU-85c) was decreased when compared with those of the isogenic CP8-capsulated parental strain (HU-85a). By comparison, no significant differences were found in the bacterial load or the OI from rats challenged with isogenic Reynolds strains [CP5, CP8, and non-typeable (NT)], indicating that lack of CP expression alone was not likely responsible for the reduced capacity to cause tissue damage in HU-85c compared with HU-85a. The production of biofilm was significantly increased in the isogenic derivative HU-85c. Lack of agr-dependent factors makes S. aureus less virulent during chronic osteomyelitis and alteration of the agr functionality seems to permit better adaptation of S. aureus to the chronically infected host

    Consumption of Lactobacillus casei fermented milk prevents Salmonella reactive arthritis by modulating IL-23/IL-17 expression.

    Get PDF
    Reactive arthritis is the development of sterile joint inflammation as a sequel to a remote infection, often in the gut. We have previously shown that a low dose of S. enteritidis inoculated to streptomycin-pretreated mice generates a self-limiting enterocolitis suitable for studying reactive arthritis. Here we show that consumption of Lactobacillus casei prior to infection abolishes intestinal and joint inflammation triggered by Salmonella. BALB/c mice were sacrificed after infection; intestinal and joint samples were analyzed for histological changes and expression of cytokines. TNF-α was measured by ELISA and the expression of IL-1β, IL-6, IL-10, IL-17, IL-23 and TGF-β was assessed by qPCR. L. casei consumption prevented Salmonella-induced synovitis, the increment of TNF-α in knees and the increase of IL-17 expression in popliteal and inguinal lymph nodes. At intestinal level consumption of L. casei drastically diminished S. enteritidis invasiveness and shortened splenic persistence of the pathogen. Bacterial loads recovered at days 2 and 5 from Peyer's patches were 10-fold lower in mice fed with L. casei. In accordance, we found that the augment in gut permeability induced during enterocolitis was decreased in those animals. Consumption of L. casei prior to infection failed to increase anti- inflammatory molecules such as IL-10 and TGF-β in the intestine. On the other hand, consumption of L. casei abrogated the expression of TNF-α, IL-17, IL-23, IL-1β and IL-6 in cecum and mesenteric lymph nodes. These cytokines are needed for differentiation of immune cells involved in the development of reactive arthritis such as Th17 and γδ T cells. Trafficking of these inflammatory cells from the gut to the joints has been proposed as a mechanism of generation of reactive arthritis. Our results suggest that L. casei consumption prevents Salmonella-induced synovitis by altering the intestinal milieu necessary for differentiation of cells involved in the generation of joint inflammation

    Sigma Factor SigB Is Crucial to Mediate <i>Staphylococcus aureus</i> Adaptation during Chronic Infections

    No full text
    <div><p><i>Staphylococcus aureus</i> is a major human pathogen that causes a range of infections from acute invasive to chronic and difficult-to-treat. Infection strategies associated with persisting <i>S</i>. <i>aureus</i> infections are bacterial host cell invasion and the bacterial ability to dynamically change phenotypes from the aggressive wild-type to small colony variants (SCVs), which are adapted for intracellular long-term persistence. The underlying mechanisms of the bacterial switching and adaptation mechanisms appear to be very dynamic, but are largely unknown. Here, we analyzed the role and the crosstalk of the global <i>S</i>. <i>aureus</i> regulators <i>agr</i>, <i>sarA</i> and SigB by generating single, double and triple mutants, and testing them with proteome analysis and in different <i>in vitro</i> and <i>in vivo</i> infection models. We were able to demonstrate that SigB is the crucial factor for adaptation in chronic infections. During acute infection, the bacteria require the simultaneous action of the <i>agr</i> and <i>sarA</i> loci to defend against invading immune cells by causing inflammation and cytotoxicity and to escape from phagosomes in their host cells that enable them to settle an infection at high bacterial density. To persist intracellularly the bacteria subsequently need to silence <i>agr</i> and <i>sarA</i>. Indeed <i>agr</i> and <i>sarA</i> deletion mutants expressed a much lower number of virulence factors and could persist at high numbers intracellularly. SigB plays a crucial function to promote bacterial intracellular persistence. In fact, Δ<i>sigB</i>-mutants did not generate SCVs and were completely cleared by the host cells within a few days. In this study we identified SigB as an essential factor that enables the bacteria to switch from the highly aggressive phenotype that settles an acute infection to a silent SCV-phenotype that allows for long-term intracellular persistence. Consequently, the SigB-operon represents a possible target to develop preventive and therapeutic strategies against chronic and therapy-refractory infections.</p></div

    Differential expression of the regulators <i>agr</i>, <i>sarA</i> and <i>sigB</i> during the course of host cell infection in wild-type LS1 and the corresponding mutants.

    No full text
    <p>Endothelial cells were infected with <i>S</i>. <i>aureus</i> strain LS1 or the corresponding mutants as described in <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1004870#ppat.1004870.g003" target="_blank">Fig 3A</a> and infected cells were analysed for up to 7 days. Host cells infected with wild-type strain LS1 were lysed after 2 (acute phase) and 7 days (chronic phase) and the whole RNA was extracted and was used to determine changes in bacterial gene expression for <i>agrA/hla</i> (α-hemolysin) (A), <i>sarA/aur</i> (aureolysin) (B) and <i>sigB/asp23</i> (C) during the course of infection by real-time PCR. The values of all experiments represent the mean ± SD of 5 independent experiments measured in triplicate. * P≤0.05 ANOVA comparing levels of gene expression in the wild-type strains and the corresponding mutants at each time point. The fold change is the result of normalized expression to the housekeeping genes <i>gyr</i>, <i>aroE</i> and <i>gmk</i>. Uninfected cells were used as controls (Control = 1).</p

    The interplay of <i>agr</i>, <i>sarA</i> and <i>sigB</i> is required to settle and maintain an infection in a local rat chronic osteomyelitis model.

    No full text
    <p>A local chronic osteomyelitis model was used to study the effects of wild-type SH1000 and corresponding mutants. (A) After 4 days of infection slices of bone tissue were performed for histology and stained by hematoxylin-eosin to detect the influx of immune cells to bone tissue. For each strain tested representative photomicrographs are shown in low and high magnification and typical histological features are described. (B, C) Bacterial persistence in host tissue was analyzed 4 days p.i. (acute) and 14 weeks p.i. (chronic) by plating homogenized bone tissue on agar plates and counting the CFU the following day. (D, E) The osteomyelitis index was measured 4 days p.i. (acute) and 14 weeks p.i. (chronic) from each infected tibiae in comparison with the non-infected tibiae from the same animal. The experiments were performed with 12 animals per group and the results shown are means ± SD. * P≤0.05 ANOVA test comparing persisting CFU and osteomyelitis index caused by wild-type SH1000 and the corresponding mutants. (F) Photographs of infected (wild-type SH1000) and non-infected tibiae recovered after 14 weeks.</p
    corecore