119 research outputs found

    Coral spawning information

    Get PDF
    Information on reproduction in reef corals is presented. An understanding of its reproductive behaviour is an important factor in helping to preserve the coral reef ecosystems

    Coral spawning information

    Get PDF
    Information on reproduction in reef corals is presented. An understanding of its reproductive behaviour is an important factor in helping to preserve the coral reef ecosystems.Coral reefs, Spawning

    Discovery of a dsRNA virus infecting the marine photosynthetic protist Micromonas pusilla

    Get PDF
    AbstractWe report the isolation of the first double-stranded (ds) RNA virus in the family Reoviridae that infects a protist (microalga Micromonas pusilla, Prasinophyceae). The dsRNA genome was composed of 11 segments ranging between 0.8 and 5.8 kb, with a total size of approximately 25.5 kb. The virus (MpRNAV-01B) could not be assigned to the genus level because host type, genome size, and number of segments smaller than 2 kb did not correspond to either of the two existing 11-segmented dsRNA genera Rotavirus and Aquareovirus. MpRNAV-01B has a particle size of 65–80 nm, a narrow host range, a latent period of 36 h, and contains five major proteins (120, 95, 67, 53, and 32 kDa). MpRNAV-01B was stable to freeze–thawing, resistant to chloroform, ether, nonionic detergents, chelating and reducing agents. The virus was inactivated at temperatures above 35 °C and by ionic detergent, ethanol, acetone, and acidic conditions (pH 2–5)

    Oidium longipes, a new powdery mildew fungus on petunia in the USA: A potential threat to ornamental and vegetable solanaceous crops

    Get PDF
    This is the first North American report of Oidium longipes, an anamorphic powdery mildew species described recently in Europe. It was found on vegetatively propagated petunia grown in a commercial greenhouse in New Jersey, USA, where it caused a rapidly spreading disease. The pathogen might have originated offshore and may have already been distributed in the United States through horticultural trade. During field surveys in Europe, it was found on petunia in Hungary and Austria as well; this is the first report of O. longipes from these two countries. A detailed light microscopy study of American and European specimens of O. longipes, including freshly collected samples and authentic herbarium specimens, revealed that its conidiophore morphology is more variable than illustrated in the original species description or in subsequent works. Microcycle conidiation, a process not yet known to occur in powdery mildews, was repeatedly observed in O. longipes. The rDNA internal transcribed spacer (ITS) sequences were identical in colonies containing different conidiophore types as well as in a total of five specimens collected from petunia in the United States, Austria, Hungary, Germany, and Switzerland. A phylogenetic analysis of the ITS sequences revealed that the closest known relative of O. longipes is O. lycopersici, known to infect tomato only in Australia. Cross-inoculation tests showed that O. longipes from petunia heavily infected tobacco cv. Xanthi, while the tomato and eggplant cultivars tested were moderately susceptible to this pathogen. These results indicate that its spread represents a potential danger to a number of solanaceous crops. Our ad hoc field surveys conducted in 2006 and 2007 did not detect it outside New Jersey in the United States; all the other powdery mildew–infected petunias, collected in New York and Indiana, were infected by Podosphaera xanthii. In Europe, most of the powdery mildew–infected petunias examined in this study were infected by P. xanthii or Golovinomyces orontii. Our multiple inoculation tests revealed that the same petunia plants and even the same leaves can be infected concomitantly by O. longipes, O. neolycopersici, G. orontii, and P. xanthii. Thus, it is at present unclear to what extent O. longipes contributes to the powdery mildew epidemics that develop year after year on solanaceous plants in many parts of the world

    Arctic microbial community dynamics influenced by elevated CO2 levels

    Get PDF
    The Arctic Ocean ecosystem is particularly vulnerable to ocean acidification (OA) related alterations due to the relatively high CO2 solubility and low carbonate saturation states of its cold surface waters. Thus far, however, there is only little known about the consequences of OA on the base of the food web. In a mesocosm CO2-enrichment experiment (overall CO2 levels ranged from ~ 180 to 1100 μatm) in Kongsfjorden off Svalbard, we studied the consequences of OA on a natural pelagic microbial community. OA distinctly affected the composition and growth of the Arctic phytoplankton community, i.e. the picoeukaryotic photoautotrophs and to a lesser extent the nanophytoplankton thrived. A shift towards the smallest phytoplankton as a result of OA will have direct consequences for the structure and functioning of the pelagic food web and thus for the biogeochemical cycles. Besides being grazed, the dominant pico- and nanophytoplankton groups were found prone to viral lysis, thereby shunting the carbon accumulation in living organisms into the dissolved pools of organic carbon and subsequently affecting the efficiency of the biological pump in these Arctic waters

    Six simple guidelines for introducing new genera of fungi

    Get PDF
    We formulate five guidelines for introducing new genera, plus one recommendation how to publish the results of scientific research. We recommend that reviewers and editors adhere to these guidelines. We propose that the underlying research is solid, and that the results and the final solutions are properly discussed. The six criteria are: (1) all genera that are recognized should be monophyletic; (2) the coverage of the phylogenetic tree should be wide in number of species, geographic coverage, and type species of the genera under study; (3) the branching of the phylogenetic trees has to have sufficient statistical support; (4) different options for the translation of the phylogenetic tree into a formal classification should be discussed and the final decision justified; (5) the phylogenetic evidence should be based on more than one gene; and (6) all supporting evidence and background information should be included in the publication in which the new taxa are proposed, and this publication should be peer-reviewed

    Contributions to the revision of the genus Entoloma (Basidiomycota, Agaricales) in Europe : six new species from subgenus Cyanula and typification of E. incarnatofuscescens

    Get PDF
    In anticipation of a phylogenetically revised monograph of Entoloma in Europe, six new species of subgenus Cyanula are described here. Entoloma cistocruentatum is associated with Cistus in Spain, E. dislocatum occurs in montane regions in Catalonia (Spain) and Tuscany (Italy), E. indikon is known from Denmark and three species are mainly distributed in the Nordic countries in Europe: E. calceus , E. perchalybeum and E. praecipuum. Entoloma incarnatofuscescens, from the /Rusticoides clade is neotypified. A fully amended description is given based on molecular evidence, which includes the recently described E. violaceoparkensis and E. klofacianum which became later synonyms.publishedVersio

    Fungal Planet description sheets: 785– 867

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Angola, Gnomoniopsis angolensis and Pseudopithomyces angolensis on unknown host plants. Australia, Dothiora corymbiae on Corymbia citriodora, Neoeucasphaeria eucalypti (incl. Neoeucasphaeria gen. nov.)on Eucalyptus sp., Fumagopsis stellae on Eucalyptus sp., Fusculina eucalyptorum (incl. Fusculinaceae fam. nov.) on Eucalyptus socialis, Harknessia corymbiicola on Corymbia maculata, Neocelosporium eucalypti (incl. Neocelosporium gen. nov., Neocelosporiaceae fam. nov. and Neocelosporiales ord. nov.) on Eucalyptus cyanophylla, Neophaeomoniella corymbiae on Corymbia citriodora, Neophaeomoniella eucalyptigena on Eucalyptus pilularis, Pseudoplagiostoma corymbiicola on Corymbia citriodora, Teratosphaeria gracilis on Eucalyptus gracilis, Zasmidium corymbiae on Corymbia citriodora. Brazil, Calonectria hemileiae on pustules of Hemileia vastatrix formed on leaves of Coffea arabica, Calvatia caatinguensis on soil, Cercospora solani-betacei on Solanum betaceum, Clathrus natalensis on soil, Diaporthe poincianellae on Poincianella pyramidalis, Geastrum piquiriunense on soil, Geosmithia carolliae on wing of Carollia perspicillata, Henningsia resupinata on wood, Penicillium guaibinense from soil, Periconia caespitosa from leaf litter, Pseudocercospora styracina on Styrax sp., Simplicillium filiforme as endophyte from Citrullus lanatus, Thozetella pindobacuensis on leaf litter, Xenosonderhenia coussapoae on Coussapoa floccosa. Canary Islands (Spain), Orbilia amarilla on Euphorbia canariensis. Cape Verde Islands, Xylodon jacobaeus on Eucalyptus camaldulensis. Chile, Colletotrichum arboricola on Fuchsia magellanica. Costa Rica, Lasiosphaeria miniovina ontreebranch. Ecuador, Ganoderma chocoense ontreetrunk. France, Neofitzroyomyces nerii (incl. Neofitzroyomyces gen. nov.) on Nerium oleander. Ghana, Castanediella tereticornis on Eucalyptus tereticornis, Falcocladium africanum on Eucalyptus brassiana, Rachicladosporium corymbiae on Corymbia citriodora. Hungary, Entoloma silvae-frondosae in Carpinus betulus-Pinus sylvestris mixedforest. Iran, Pseudopyricularia persiana on Cyperus sp. Italy, Inocybe roseascens onsoilinmixedforest. Laos, Ophiocordyceps houaynhangensis on Coleoptera larva. Malaysia, Monilochaetes melastomae on Melastoma sp. Mexico, Absidia terrestris fromsoil. Netherlands, Acaulium pannemaniae, Conioscypha boutwelliae, Fusicolla septimanifiniscientiae, Gibellulopsis simonii, Lasionectria hilhorstii, Lectera nordwiniana, Leptodiscella rintelii, Parasarocladium debruynii and Sarocladium dejongiae (incl. Sarocladiaceae fam. nov.) fromsoil. New Zealand, Gnomoniopsis rosae on Rosa sp. and Neodevriesia metrosideri on Metrosideros sp. Puerto Rico, Neodevriesia coccolobae on Coccoloba uvifera, Neodevriesia tabebuiae and Alfaria tabebuiae on Tabebuia chrysantha . Russia, Amanita paludosa on bogged soil in mixed deciduous forest, Entoloma tiliae in forest of Tilia × europaea, Kwoniella endophytica on Pyrus communis. South Africa, Coniella diospyri on Diospyros mespiliformis, Neomelanconiella combreti (incl. Neomelanconiellaceae fam. nov. and Neomelanconiella gen. nov.)on Combretum sp., Polyphialoseptoria natalensis on unidentified plant host, Pseudorobillarda bolusanthi on Bolusanthus speciosus, Thelonectria pelargonii on Pelargonium sp. Spain, Vermiculariopsiella lauracearum and Anungitopsis lauri on Laurus novocanariensis, Geosmithia xerotolerans from a darkened wall of a house, Pseudopenidiella gallaica on leaf litter. Thailand, Corynespora thailandica on wood, Lareunionomyces loeiensis on leaf litter, Neocochlearomyces chromolaenae (incl. Neocochlearomyces gen. nov.) on Chromolaena odorata, Neomyrmecridium septatum (incl. Neomyrmecridium gen. nov .), Pararamichloridium caricicola on Carex sp., Xenodactylaria thailandica (incl. Xenodactylariaceae fam. nov. and Xenodactylaria gen. nov.), Neomyrmecridium asiaticum and Cymostachys thailandica fromunidentifiedvine. USA, Carolinigaster bonitoi (incl. Carolinigaster gen. nov.)fromsoil, Penicillium fortuitum from house dust, Phaeotheca shathenatiana (incl. Phaeothecaceae fam. nov.) from twig and cone litter, Pythium wohlseniorum from stream water, Superstratomyces tardicrescens from human eye, Talaromyces iowaense from officeair. Vietnam, Fistulinella olivaceoalba onsoil. Morphological and culture characteristics along with DNA barcodes are provided Novel species of fungi described in this study include those from various countries as follows: Angola, Gnomoniopsis angolensis and Pseudopithomyces angolensis on unknown host plants. Australia, Dothiora corymbiae on Corymbia citriodora, Neoeucasphaeria eucalypti (incl. Neoeucasphaeria gen. nov.)on Eucalyptus sp., Fumagopsis stellae on Eucalyptus sp., Fusculina eucalyptorum (incl. Fusculinaceae fam. nov.) on Eucalyptus socialis, Harknessia corymbiicola on Corymbia maculata, Neocelosporium eucalypti (incl. Neocelosporium gen. nov., Neocelosporiaceae fam. nov. and Neocelosporiales ord. nov.) on Eucalyptus cyanophylla, Neophaeomoniella corymbiae on Corymbia citriodora, Neophaeomoniella eucalyptigena on Eucalyptus pilularis, Pseudoplagiostoma corymbiicola on Corymbia citriodora, Teratosphaeria gracilis on Eucalyptus gracilis, Zasmidium corymbiae on Corymbia citriodora. Brazil, Calonectria hemileiae on pustules of Hemileia vastatrix formed on leaves of Coffea arabica, Calvatia caatinguensis on soil, Cercospora solani-betacei on Solanum betaceum, Clathrus natalensis on soil, Diaporthe poincianellae on Poincianella pyramidalis, Geastrum piquiriunense on soil, Geosmithia carolliae on wing of Carollia perspicillata, Henningsia resupinata on wood, Penicillium guaibinense from soil, Periconia caespitosa from leaf litter, Pseudocercospora styracina on Styrax sp., Simplicillium filiforme as endophyte from Citrullus lanatus, Thozetella pindobacuensis on leaf litter, Xenosonderhenia coussapoae on Coussapoa floccosa. Canary Islands (Spain), Orbilia amarilla on Euphorbia canariensis. Cape Verde Islands, Xylodon jacobaeus on Eucalyptus camaldulensis. Chile, Colletotrichum arboricola on Fuchsia magellanica. Costa Rica, Lasiosphaeria miniovina ontreebranch. Ecuador, Ganoderma chocoense ontreetrunk. France, Neofitzroyomyces nerii (incl. Neofitzroyomyces gen. nov.) on Nerium oleander. Ghana, Castanediella tereticornis on Eucalyptus tereticornis, Falcocladium africanum on Eucalyptus brassiana, Rachicladosporium corymbiae on Corymbia citriodora. Hungary, Entoloma silvae-frondosae in Carpinus betulus-Pinus sylvestris mixedforest. Iran, Pseudopyricularia persiana on Cyperus sp. Italy, Inocybe roseascens onsoilinmixedforest. Laos, Ophiocordyceps houaynhangensis on Coleoptera larva. Malaysia, Monilochaetes melastomae on Melastoma sp. Mexico, Absidia terrestris fromsoil. Netherlands, Acaulium pannemaniae, Conioscypha boutwelliae, Fusicolla septimanifiniscientiae, Gibellulopsis simonii, Lasionectria hilhorstii, Lectera nordwiniana, Leptodiscella rintelii, Parasarocladium debruynii and Sarocladium dejongiae (incl. Sarocladiaceae fam. nov.) fromsoil. New Zealand, Gnomoniopsis rosae on Rosa sp. and Neodevriesia metrosideri on Metrosideros sp. Puerto Rico, Neodevriesia coccolobae on Coccoloba uvifera, Neodevriesia tabebuiae and Alfaria tabebuiae on Tabebuia chrysantha. Russia, Amanita paludosa on bogged soil in mixed deciduous forest, Entoloma tiliae in forest of Tilia × europaea, Kwoniella endophytica on Pyrus communis. South Africa, Coniella diospyri on Diospyros mespiliformis, Neomelanconiella combreti (incl. Neomelanconiellaceae fam. nov. and Neomelanconiella gen. nov.)on Combretum sp., Polyphialoseptoria natalensis on unidentified plant host, Pseudorobillarda bolusanthi on Bolusanthus speciosus, Thelonectria pelargonii on Pelargonium sp. Spain, Vermiculariopsiella lauracearum and Anungitopsis lauri on Laurus novocanariensis, Geosmithia xerotolerans from a darkened wall of a house, Pseudopenidiella gallaica on leaf litter. Thailand, Corynespora thailandica on wood, Lareunionomyces loeiensis on leaf litter, Neocochlearomyces chromolaenae (incl. Neocochlearomyces gen. nov.) on Chromolaena odorata, Neomyrmecridium septatum (incl. Neomyrmecridium gen. nov .), Pararamichloridium caricicola on Carex sp., Xenodactylaria thailandica (incl. Xenodactylariaceae fam. nov. and Xenodactylaria gen. nov.), Neomyrmecridium asiaticum and Cymostachys thailandica fromunidentifiedvine. USA, Carolinigaster bonitoi (incl. Carolinigaster gen. nov.)fromsoil, Penicillium fortuitum from house dust, Phaeotheca shathenatiana (incl. Phaeothecaceae fam. nov.) from twig and cone litter, Pythium wohlseniorum from stream water, Superstratomyces tardicrescens from human eye, Talaromyces iowaense from officeair. Vietnam, Fistulinella olivaceoalba onsoil. Morphological and culture characteristics along with DNA barcodes are provided
    corecore