534 research outputs found

    Dynamical Hartree-Fock-Bogoliubov Theory of Vortices in Bose-Einstein Condensates at Finite Temperature

    Full text link
    We present a method utilizing the continuity equation for the condensate density to make predictions of the precessional frequency of single off-axis vortices and of vortex arrays in Bose-Einstein condensates at finite temperature. We also present an orthogonalized Hartree-Fock-Bogoliubov (HFB) formalism. We solve the continuity equation for the condensate density self-consistently with the orthogonalized HFB equations, and find stationary solutions in the frame rotating at this frequency. As an example of the utility of this formalism we obtain time-independent solutions for quasi-two-dimensional rotating systems in the co-rotating frame. We compare these results with time-dependent predictions where we simulate stirring of the condensate.Comment: 13 pages, 11 figures, 1 tabl

    Noether's theorem and gauge transformations. Application to the bosonic string and CP(2,n-1) model

    Get PDF
    New results on the theory of constrained systems are applied to characterize the generators of Noethers symmetry transformations. As a byproduct, an algorithm to construct gauge transformations in Hamiltonian formalism is derived. This is illustrated with two relevant examples

    Lorenz integrable system moves \`a la Poinsot

    Full text link
    A transformation is derived which takes Lorenz integrable system into the well-known Euler equations of a free-torque rigid body with a fixed point, i.e. the famous motion \`a la Poinsot. The proof is based on Lie group analysis applied to two third order ordinary differential equations admitting the same two-dimensional Lie symmetry algebra. Lie's classification of two-dimensional symmetry algebra in the plane is used. If the same transformation is applied to Lorenz system with any value of parameters, then one obtains Euler equations of a rigid body with a fixed point subjected to a torsion depending on time and angular velocity. The numerical solution of this system yields a three-dimensional picture which looks like a "tornado" whose cross-section has a butterfly-shape. Thus, Lorenz's {\em butterfly} has been transformed into a {\em tornado}.Comment: 14 pages, 6 figure

    Symmetries of the Energy-Momentum Tensor: Some Basic Facts

    Get PDF
    It has been pointed by Hall et al. [1] that matter collinations can be defined by using three different methods. But there arises the question of whether one studies matter collineations by using the LξTab=0{\cal L}_\xi T_{ab}=0, or LξTab=0{\cal L}_\xi T^{ab}=0 or LξTab=0{\cal L}_\xi T_a^b=0. These alternative conditions are, of course, not generally equivalent. This problem has been explored by applying these three definitions to general static spherically symmetric spacetimes. We compare the results with each definition.Comment: 17 pages, accepted for publication in "Communications in Theoretical Physics

    Nonlinear physics of the ionosphere and LOIS/LOFAR

    Full text link
    The ionosphere is the only large-scale plasma laboratory without walls that we have direct access to. From results obtained in systematic, repeatable experiments in this natural laboratory, where we can vary the stimulus and observe its response in a controlled, repeatable manner, we can draw conclusions on similar physical processes occurring naturally in the Earth's plasma environment as well as in parts of the plasma universe that are not easily accessible to direct probing. Of particular interest is electromagnetic turbulence excited in the ionosphere by beams of particles (photons, electrons) and its manifestation in terms of secondary radiation (electrostatic and electromagnetic waves), structure formation (solitons, cavitons, alfveons, striations), and the associated exchange of energy, linear momentum, and angular momentum. We present a new diagnostic technique, based on vector radio allowing the utilization of EM angular momentum (vorticity), to study plasma turbulence remotely.Comment: Six pages, two figures. To appear in Plasma Physics and Controlled Fusio

    An introduction to the spectrum, symmetries, and dynamics of spin-1/2 Heisenberg chains

    Full text link
    Quantum spin chains are prototype quantum many-body systems. They are employed in the description of various complex physical phenomena. The goal of this paper is to provide an introduction to the subject by focusing on the time evolution of a Heisenberg spin-1/2 chain and interpreting the results based on the analysis of the eigenvalues, eigenstates, and symmetries of the system. We make available online all computer codes used to obtain our data.Comment: 8 pages, 3 figure

    On the generalized Davenport constant and the Noether number

    Full text link
    Known results on the generalized Davenport constant related to zero-sum sequences over a finite abelian group are extended to the generalized Noether number related to the rings of polynomial invariants of an arbitrary finite group. An improved general upper bound is given on the degrees of polynomial invariants of a non-cyclic finite group which cut out the zero vector.Comment: 14 page

    Duality between integrable Stackel systems

    Full text link
    For the Stackel family of the integrable systems a non-canonical transformation of the time variable is considered. This transformation may be associated to the ambiguity of the Abel map on the corresponding hyperelliptic curve. For some Stackel's systems with two degrees of freedom the 2x2 Lax representations and the dynamical r-matrix algebras are constructed. As an examples the Henon-Heiles systems, integrable Holt potentials and the integrable deformations of the Kepler problem are discussed in detail.Comment: LaTeX2e, 18 page

    Conserved Quantities in f(R)f(R) Gravity via Noether Symmetry

    Full text link
    This paper is devoted to investigate f(R)f(R) gravity using Noether symmetry approach. For this purpose, we consider Friedmann Robertson-Walker (FRW) universe and spherically symmetric spacetimes. The Noether symmetry generators are evaluated for some specific choice of f(R)f(R) models in the presence of gauge term. Further, we calculate the corresponding conserved quantities in each case. Moreover, the importance and stability criteria of these models are discussed.Comment: 14 pages, accepted for publication in Chin. Phys. Let

    The Lie derivative of spinor fields: theory and applications

    Full text link
    Starting from the general concept of a Lie derivative of an arbitrary differentiable map, we develop a systematic theory of Lie differentiation in the framework of reductive G-structures P on a principal bundle Q. It is shown that these structures admit a canonical decomposition of the pull-back vector bundle i_P^*(TQ) = P\times_Q TQ over P. For classical G-structures, i.e. reductive G-subbundles of the linear frame bundle, such a decomposition defines an infinitesimal canonical lift. This lift extends to a prolongation Gamma-structure on P. In this general geometric framework the concept of a Lie derivative of spinor fields is reviewed. On specializing to the case of the Kosmann lift, we recover Kosmann's original definition. We also show that in the case of a reductive G-structure one can introduce a "reductive Lie derivative" with respect to a certain class of generalized infinitesimal automorphisms, and, as an interesting by-product, prove a result due to Bourguignon and Gauduchon in a more general manner. Next, we give a new characterization as well as a generalization of the Killing equation, and propose a geometric reinterpretation of Penrose's Lie derivative of "spinor fields". Finally, we present an important application of the theory of the Lie derivative of spinor fields to the calculus of variations.Comment: 28 pages, 1 figur
    corecore