9,425 research outputs found
Recommended from our members
Brainstem atrophy in focal epilepsy destabilizes brainstem-brain interactions: Preliminary findings.
BACKGROUND: MR Imaging has shown atrophy in brainstem regions that were linked to autonomic dysfunction in epilepsy patients. The brainstem projects to and modulates the activation state of several wide-spread cortical/subcortical regions. The goal was to investigate 1. Impact of brainstem atrophy on gray matter connectivity of cortical/subcortical structures and autonomic control. 2. Impact on the modulation of cortical/subcortical functional connectivity.
METHODS: 11 controls and 18 patients with non-lesional focal epilepsy (FE) underwent heart rate variability (HRV) measurements and a 3 T MRI (T1 in all subjects, task-free fMRI in 7 controls/ 12 FE). The brainstem was extracted, and atrophy assessed using deformation-based-morphometry. The age-corrected z-scores of the mean Jacobian determinants were extracted from 71 5x5x5 mm grids placed in brainstem regions associated with autonomic function. Cortical and non-brainstem subcortical gray matter atrophy was assessed with voxel-based-morphometry and mean age corrected z-scores of the modulated gray matter volumes extracted from 380 cortical/subcortical rois. The profile similarity index was used to characterize the impact of brainstem atrophy on gray matter connectivity. The fMRI was preprocessed in SPM12/Conn17 and the BOLD signal extracted from 398 ROIs (16 brainstem). A dynamic task-free analysis approach was used to identify activation states. Connectivity HRV relationship were assessed with Spearman rank correlations.
RESULTS: HRV was negatively correlated with reduced brainstem right hippocampus/parahippocampus gray matter connectivity in controls (p \u3c .05, FDR) and reduced brainstem to right parietal cortex, lingual gyrus, left hippocampus/amygdala, parahippocampus, temporal pole, and bilateral anterior thalamus connectivity in FE (p \u3c .05, FDR). Dynamic task-free fMRI analysis identified 22 states. The strength of the functional brainstem/cortical connectivity of state 15 was negatively associated with HRV (r = -0.5, p = .03) and positively with decreased brainstem-cortical (0.49, p = .03) gray matter connectivity.
CONCLUSION: The findings of this small pilot study suggest that impaired brainstem-cortex gray matter connectivity in FE negatively affects the brainstem\u27s ability to control cortical activation
Eu-Eu exchange interaction and Eu distribution in Pb_(1-x)Eu_(x)Te from magnetization steps
The magnetization of Pb_{1-x}Eu_{x}Te samples with x = 1.9, 2.6 and 6.0% was
measured at 20 mK in fields up to 50 kOe, and at 0.6 K in fields up to 180 kOe.
The 20 mK data show the magnetization steps (MSTs) arising from pairs and from
triplets. The pair MSTs are used to obtain the dominant Eu-Eu antiferromagnetic
exchange constant, J/k_{B} = -0.264 \pm 0.018 K. The exchange constant for
triplets is the same. Comparison of the magnetization curves with theoretical
simulations indicates that the Eu ions are not randomly distributed over all
the cation sites. The deviation from a random distribution is much smaller if J
is assumed to be the nearest-neighbor exchange constant J_{1} rather than the
next-nearest-neighbor exchange constant J_{2}. On this basis, J is tentatively
identified as J_{1}. To obtain agreement with the data, it must be assumed that
the Eu ions tend to bunch together. Comparision with microprobe data indicates
that the length scale for these concentration variations is smaller than a few
micrometer. The theoretical simulations in the present work improve on those
performed earlier by including clusters larger than three spins.Comment: 9 pages, 6 figs, Revtex, accepted for publication in Phys. Rev.
Levels of genetic polymorphism: marker loci versus quantitative traits
Species are the units used to measure ecological diversity and alleles are the units of genetic diversity. Genetic variation within and among species has been documented most extensively using allozyme electrophoresis. This reveals wide differences in genetic variability within, and genetic distances among, species, demonstrating that species are not equivalent units of diversity. The extent to which the pattern observed for allozymes can be used to infer patterns of genetic variation in quantitative traits depends on the forces generating and maintaining variability. Allozyme variation is probably not strictly neutral but, nevertheless, heterozygosity is expected to be influenced by population size and genetic distance will be affected by time since divergence. The same is true for quantitative traits influenced by many genes and under weak stabilizing selection. However, the limited data available suggest that allozyme variability is a poor predictor of genetic variation in quantitative traits within populations. It is a better predictor of general phenotypic divergence and of postzygotic isolation between populations or species, but is only weakly correlated with prezygotic isolation. Studies of grasshopper and planthopper mating signal variation and assortative mating illustrate how these characters evolve independently of general genetic and morphological variation. The role of such traits in prezygotic isolation, and hence speciation, means that they will contribute significantly to the diversity of levels of genetic variation within and among species
Allozyme and mitochondrial DNA variability within the New Zealand damselfly genera Xanthocnemis, Austrolestes, and Ischnura (Odonata)
We collected larval damselflies from 17 sites in the North, South and Chatham Islands, and tested the hypotheses that: (1) genetic markers (e.g., allozymes, mtDNA) would successfully ¬discriminate taxa; and (2) the dispersal capabilities of adult damselflies would limit differentiation among locations. Four species from three genera were identified based on available taxonomic keys. Using 11 allozyme loci and the mitochondrial cytochrome c-oxidase subunit I (COI) gene, we confirmed that all taxa were clearly discernible. We found evidence for low to moderate differentiation among locations based on allozyme (mean FST = 0.09) and sequence (COI) divergence (<0.034). No obvious patterns with respect to geographic location were detected, although slight differences were found between New Zealand’s main islands (North Island, South Island) and the Chatham Islands for A. colensonis (sequence divergence 0.030–0.034). We also found limited intraspecific genetic variability based on allozyme data (Hexp < 0.06 in all cases). We conclude that levels of gene flow/dispersal on the main islands may have been sufficient to maintain the observed homogeneous population structure, and that genetic techniques, particularly the COI gene locus, will be a useful aid in future identifications
Chloroplast microsatellites: measures of genetic diversity and the effect of homoplasy
Chloroplast microsatellites have been widely used in population genetic
studies of conifers in recent years. However, their haplotype configurations
suggest that they could have high levels of homoplasy, thus limiting the power
of these molecular markers. A coalescent-based computer simulation was used to
explore the influence of homoplasy on measures of genetic diversity based on
chloroplast microsatellites. The conditions of the simulation were defined to
fit isolated populations originating from the colonization of one single
haplotype into an area left available after a glacial retreat. Simulated data
were compared with empirical data available from the literature for a species
of Pinus that has expanded north after the Last Glacial Maximum. In the
evaluation of genetic diversity, homoplasy was found to have little influence
on Nei's unbiased haplotype diversity (H(E)) while Goldstein's genetic distance
estimates (D2sh) were much more affected. The effect of the number of
chloroplast microsatellite loci for evaluation of genetic diversity is also
discussed
Molecular and morphometric variation in European populations of the articulate brachiopod <i>Terebeatulina retusa</i>
Molecular and morphometric variation within and between population samples of the articulate brachiopod <i>Terebratulina</i> spp., collected in 1985-1987 from a Norwegian fjord, sea lochs and costal sites in western Scotland, the southern English Channel (Brittany) and the western Mediterranean, were measured by the analysis of variation in the lengths of mitochondrial DNA (mtDNA) fragments produced by digestion with nine restriction endonucleases and by multivariate statistical analysis of six selected morphometric parameters. Nucleotide difference within each population sample was high. Nucleotide difference between population samples from the Scottish sites, both those that are tidally contiguous and those that appear to be geographically isolated, were not significantly different from zero. Nucleotide differences between the populations samples from Norway, Brittany, Scotland and the western Mediterranean were also very low. Morphometric analysis confirmed the absence of substantial differentiation
Hyperbolic Geometry of Complex Networks
We develop a geometric framework to study the structure and function of
complex networks. We assume that hyperbolic geometry underlies these networks,
and we show that with this assumption, heterogeneous degree distributions and
strong clustering in complex networks emerge naturally as simple reflections of
the negative curvature and metric property of the underlying hyperbolic
geometry. Conversely, we show that if a network has some metric structure, and
if the network degree distribution is heterogeneous, then the network has an
effective hyperbolic geometry underneath. We then establish a mapping between
our geometric framework and statistical mechanics of complex networks. This
mapping interprets edges in a network as non-interacting fermions whose
energies are hyperbolic distances between nodes, while the auxiliary fields
coupled to edges are linear functions of these energies or distances. The
geometric network ensemble subsumes the standard configuration model and
classical random graphs as two limiting cases with degenerate geometric
structures. Finally, we show that targeted transport processes without global
topology knowledge, made possible by our geometric framework, are maximally
efficient, according to all efficiency measures, in networks with strongest
heterogeneity and clustering, and that this efficiency is remarkably robust
with respect to even catastrophic disturbances and damages to the network
structure
Sequence alignment, mutual information, and dissimilarity measures for constructing phylogenies
Existing sequence alignment algorithms use heuristic scoring schemes which
cannot be used as objective distance metrics. Therefore one relies on measures
like the p- or log-det distances, or makes explicit, and often simplistic,
assumptions about sequence evolution. Information theory provides an
alternative, in the form of mutual information (MI) which is, in principle, an
objective and model independent similarity measure. MI can be estimated by
concatenating and zipping sequences, yielding thereby the "normalized
compression distance". So far this has produced promising results, but with
uncontrolled errors. We describe a simple approach to get robust estimates of
MI from global pairwise alignments. Using standard alignment algorithms, this
gives for animal mitochondrial DNA estimates that are strikingly close to
estimates obtained from the alignment free methods mentioned above. Our main
result uses algorithmic (Kolmogorov) information theory, but we show that
similar results can also be obtained from Shannon theory. Due to the fact that
it is not additive, normalized compression distance is not an optimal metric
for phylogenetics, but we propose a simple modification that overcomes the
issue of additivity. We test several versions of our MI based distance measures
on a large number of randomly chosen quartets and demonstrate that they all
perform better than traditional measures like the Kimura or log-det (resp.
paralinear) distances. Even a simplified version based on single letter Shannon
entropies, which can be easily incorporated in existing software packages, gave
superior results throughout the entire animal kingdom. But we see the main
virtue of our approach in a more general way. For example, it can also help to
judge the relative merits of different alignment algorithms, by estimating the
significance of specific alignments.Comment: 19 pages + 16 pages of supplementary materia
Microsatellite analysis of populations of the endangered tree Gomortega keule suggests pre-Columbian differentiation
Temperate forests have been affected extensively by human activities, resulting in land cover changes and population fragmentation. However, these anthropogenic effects can be superimposed onto the natural history of species, making it difficult to determine which effect is more important for a particular species. Gomortega keule is an endangered tree that is found in one of the world’s biodiversity hotspots in central–south Chile. Human activities have significantly impacted on the original habitat in this region in recent years and are commonly considered to be the main cause of the scarcity of this species. However, aspects of the natural history of this evergreen tree may also help to explain its present-day genetic structure. In this study, we undertook microsatellite genotyping of the two southernmost populations of G. keule, which are 7.5 km apart and well isolated from other populations. We found that there was genetic differentiation between these populations, suggesting that they exhibited at least some differentiation before becoming isolated, most likely before human activities first impacted the region some two centuries ago. Molecular estimates of their divergence time supported a more ancient differentiation of the populations than would be explained by human activities alone. It is possible that their isolation may have followed the extinction of megafaunal seed dispersers around 12,000 years before present in this region, as indicated by fruit characteristics, the absence of recruitment by seedlings and the existence of clonal trees
- …
