118 research outputs found

    Non-Gaussianity in Cosmic Microwave Background Temperature Fluctuations from Cosmic (Super-)Strings

    Full text link
    We compute analytically the small-scale temperature fluctuations of the cosmic microwave background from cosmic (super-)strings and study the dependence on the string intercommuting probability PP. We develop an analytical model which describes the evolution of a string network and calculate the numbers of string segments and kinks in a horizon volume. Then we derive the probability distribution function (pdf) which takes account of finite angular resolution of observation. The resultant pdf consists of a Gaussian part due to frequent scatterings by long string segments and a non-Gaussian tail due to close encounters with kinks. The dispersion of the Gaussian part is reasonably consistent with that obtained by numerical simulations by Fraisse et al.. On the other hand, the non-Gaussian tail contains two phenomenological parameters which are determined by comparison with the numerical results for P=1. Extrapolating the pdf to the cases with P<1P<1, we predict that the non-Gaussian feature is suppressed for small PP.Comment: 6 pages, 2 figure, version accepted by JCA

    A general proof of the equivalence between the \delta N and covariant formalisms

    Full text link
    Recently, the equivalence between the \delta N and covariant formalisms has been shown (Suyama et al. 2012), but they essentially assumed Einstein gravity in their proof. They showed that the evolution equation of the curvature covector in the covariant formalism on uniform energy density slicings coincides with that of the curvature perturbation in the \delta N formalism assuming the coincidence of uniform energy and uniform expansion (Hubble) slicings, which is the case on superhorizon scales in Einstein gravity. In this short note, we explicitly show the equivalence between the \delta N and covariant formalisms without specifying the slicing condition and the associated slicing coincidence, in other words, regardless of the gravity theory.Comment: 7 pages,a reference added, to be published in EP

    Cosmological solutions of massive gravity on de Sitter

    Full text link
    In the framework of the recently proposed models of massive gravity, defined with respect to a de Sitter reference metric, we obtain new homogeneous and isotropic solutions for arbitrary cosmological matter and arbitrary spatial curvature. These solutions can be classified into three branches. In the first two, the massive gravity terms behave like a cosmological constant. In the third branch, the massive gravity effects can be described by a time evolving effective fluid with rather remarkable features, including the property to behave as a cosmological constant at late time.Comment: 6 pages, 1 figure; discussion extended, a few references added, improved analysis in Section

    Cosmological constraints on extended Galileon models

    Full text link
    The extended Galileon models possess tracker solutions with de Sitter attractors along which the dark energy equation of state is constant during the matter-dominated epoch, i.e. w_DE = -1-s, where s is a positive constant. Even with this phantom equation of state there are viable parameter spaces in which the ghosts and Laplacian instabilities are absent. Using the observational data of the supernovae type Ia, the cosmic microwave background (CMB), and baryon acoustic oscillations, we place constraints on the tracker solutions at the background level and find that the parameter s is constrained to be s=0.034 (-0.034,+0.327) (95% CL) in the flat Universe. In order to break the degeneracy between the models we also study the evolution of cosmological density perturbations relevant to the large-scale structure (LSS) and the Integrated-Sachs-Wolfe (ISW) effect in CMB. We show that, depending on the model parameters, the LSS and the ISW effect is either positively or negatively correlated. It is then possible to constrain viable parameter spaces further from the observational data of the ISW-LSS cross-correlation as well as from the matter power spectrum.Comment: 17 pages, 9 figures, uses RevTeX4-

    Conditions for large non-Gaussianity in two-field slow-roll inflation

    Get PDF
    We study the level of primordial non-Gaussianity in slow-roll two-field inflation. Using an analytic formula for the nonlinear parameter f_nl in the case of a sum or product separable potential, we find that it is possible to generate significant non-Gaussianity even during slow-roll inflation with Gaussian perturbations at Hubble exit. In this paper we give the general conditions to obtain large non-Gaussianity and calculate the level of fine-tuning required to obtain this. We present explicit models in which the non-Gaussianity at the end of inflation can exceed the current observational bound of |f_nl|<100.Comment: 16 pages, 6 figures, 1 table, v2: typos corrected and references added, matches version accepted by JCA

    Conservation of the nonlinear curvature perturbation in generic single-field inflation

    Full text link
    It is known that the curvature perturbation on uniform energy density (or comoving or uniform Hubble) slices on superhorizon scales is conserved to full nonlinear order if the pressure is only a function of the energy density (ie, if the perturbation is purely adiabatic), independent of the gravitational theory. Here we explicitly show that the same conservation holds for a universe dominated by a single scalar field provided that the field is in an attractor regime, for a very general class of scalar field theories. However, we also show that if the scalar field equation contains a second time derivative of the metric, as in the case of the Galileon theory, one has to invoke the gravitational field equations to show the conservation.Comment: 6 pages, minor revisions made but conclusion unchanged, references added, to be published in CQG as a fast track communicatio

    Large slow-roll corrections to the bispectrum of noncanonical inflation

    Full text link
    Nongaussian statistics are a powerful discriminant between inflationary models, particularly those with noncanonical kinetic terms. Focusing on theories where the Lagrangian is an arbitrary Lorentz-invariant function of a scalar field and its first derivatives, we review and extend the calculation of the observable three-point function. We compute the "next-order" slow-roll corrections to the bispectrum in closed form, and obtain quantitative estimates of their magnitude in DBI and power-law k-inflation. In the DBI case our results enable us to estimate corrections from the shape of the potential and the warp factor: these can be of order several tens of percent. We track the possible sources of large logarithms which can spoil ordinary perturbation theory, and use them to obtain a general formula for the scale dependence of the bispectrum. Our result satisfies the next-order version of Maldacena's consistency condition and an equivalent consistency condition for the scale dependence. We identify a new bispectrum shape available at next-order, which is similar to a shape encountered in Galileon models. If fNL is sufficiently large this shape may be independently detectable.Comment: v1: 37 pages, plus tables, figures and appendices. v2: supersedes version published in JCAP; some clarifications and more detailed comparison with earlier literature. All results unchanged. v3:improvements to some plots; text unchange

    The Imperfect Fluid behind Kinetic Gravity Braiding

    Get PDF
    We present a standard hydrodynamical description for non-canonical scalar field theories with kinetic gravity braiding. In particular, this picture applies to the simplest galileons and k-essence. The fluid variables not only have a clear physical meaning but also drastically simplify the analysis of the system. The fluid carries charges corresponding to shifts in field space. This shift-charge current contains a spatial part responsible for diffusion of the charges. Moreover, in the incompressible limit, the equation of motion becomes the standard diffusion equation. The fluid is indeed imperfect because the energy flows neither along the field gradient nor along the shift current. The fluid has zero vorticity and is not dissipative: there is no entropy production, the energy-momentum is exactly conserved, the temperature vanishes and there is no shear viscosity. Still, in an expansion around a perfect fluid one can identify terms which correct the pressure in the manner of bulk viscosity. We close by formulating the non-trivial conditions for the thermodynamic equilibrium of this imperfect fluid.Comment: 23 pages plus appendices. New version includes extended discussion on diffusion and dynamics in alternative frames, as well as additional references. v3 reflects version accepted for publication in JHEP: minor comments added regarding suitability to numerical approache

    Primordial fluctuations and non-Gaussianities from multifield DBI Galileon inflation

    Get PDF
    We study a cosmological scenario in which the DBI action governing the motion of a D3-brane in a higher-dimensional spacetime is supplemented with an induced gravity term. The latter reduces to the quartic Galileon Lagrangian when the motion of the brane is non-relativistic and we show that it tends to violate the null energy condition and to render cosmological fluctuations ghosts. There nonetheless exists an interesting parameter space in which a stable phase of quasi-exponential expansion can be achieved while the induced gravity leaves non trivial imprints. We derive the exact second-order action governing the dynamics of linear perturbations and we show that it can be simply understood through a bimetric perspective. In the relativistic regime, we also calculate the dominant contribution to the primordial bispectrum and demonstrate that large non-Gaussianities of orthogonal shape can be generated, for the first time in a concrete model. More generally, we find that the sign and the shape of the bispectrum offer powerful diagnostics of the precise strength of the induced gravity.Comment: 34 pages including 9 figures, plus appendices and bibliography. Wordings changed and references added; matches version published in JCA

    Spectral Index and Non-Gaussianity in Supersymmetric Hybrid Inflation

    Full text link
    We consider a supersymmetric hybrid inflation model with two inflaton fields. The superpotential during inflation is dominated by W=(\kappa S+\kappa' S')M^2, where S, S' are inflatons carrying the same U(1)_R charge, \kappa, \kappa' are dimensionless couplings, and M (\sim 10^{15-16} GeV) is a dimensionful parameter associated with a symmetry breaking scale. One light mass eigenstate drives inflation, while the other heavier mass eigenstate is stuck to the origin. The smallness of the lighter inflaton mass for the scalar spectral index n_s\approx 0.96, which is the center value of WMAP7, can be controlled by the ratio \kappa'/\kappa through the supergravity corrections. We also discuss the possibility of the two field inflation and large non-Gaussianity in this setup.Comment: 17 pages, 2 figures, version published in Eur. Phys. J.
    corecore