70 research outputs found

    Role of hippocampal NF-κB and GluN2B in the memory acquisition impairment of experiences gathered prior to cocaine administration in rats

    Get PDF
    Cocaine can induce severe neurobehavioral changes, among others, the ones involved in learning and memory processes. It is known that during drug consumption, cocaine-associated memory and learning processes take place. However, much less is known about the effects of this drug upon the mechanisms involved in forgetting.The present report focuses on the mechanisms by which cocaine affects memory consolidation of experiences acquired prior to drug administration. We also study the involvement of hippocampus in these processes, with special interest on the role of Nuclear factor kappa B (NF-κB), N-methyl-D-aspartate glutamate receptor 2B (GluN2B), and their relationship with other proteins, such as cyclic AMP response element binding protein (CREB). For this purpose, we developed a rat experimental model of chronic cocaine administration in which spatial memory and the expression or activity of several proteins in the hippocampus were assessed after 36 days of drug administration. We report an impairment in memory acquisition of experiences gathered prior to cocaine administration, associated to an increase in GluN2B expression in the hippocampus. We also demonstrate a decrease in NF-κB activity, as well as in the expression of the active form of CREB, confirming the role of these transcription factors in the cocaine-induced memory impairment

    Cocaine promotes oxidative stress and microglial-macrophage activation in rat cerebellum

    Get PDF
    Different mechanisms have been suggested for cocaine neurotoxicity, including oxidative stress alterations. Nuclear factor kappa B (NF-κB), considered a sensor of oxidative stress and inflammation, is involved in drug toxicity and addiction. NF-κB is a key mediator for immune responses that induces microglial/macrophage activation under inflammatory processes and neuronal injury/degeneration. Although cerebellum is commonly associated to motor control, muscular tone, and balance. Its relation with addiction is getting relevance, being associated to compulsive and perseverative behaviors. Some reports indicate that cerebellar microglial activation induced by cannabis or ethanol, promote cerebellar alterations and these alterations could be associated to addictive-related behaviors. After considering the effects of some drugs on cerebellum, the aim of the present work analyzes pro-inflammatory changes after cocaine exposure. Rats received daily 15 mg/kg cocaine i.p., for 18 days. Reduced and oxidized forms of glutathione (GSH) and oxidized glutathione (GSSG), glutathione peroxidase (GPx) activity and glutamate were determined in cerebellar homogenates. NF-κB activity, CD68, and GFAP expression were determined. Cerebellar GPx activity and GSH/GSSG ratio are significantly decreased after cocaine exposure. A significant increase of glutamate concentration is also observed. Interestingly, increased NF-κB activity is also accompanied by an increased expression of the lysosomal mononuclear phagocytic marker ED1 without GFAP alterations. Current trends in addiction biology are focusing on the role of cerebellum on addictive behaviors. Cocaine-induced cerebellar changes described herein fit with previosus data showing cerebellar alterations on addict subjects and support the proposed role of cerebelum in addiction

    Naltrexone Reverses Ethanol-Induced Rat Hippocampal and Serum Oxidative Damage

    Get PDF
    Naltrexone, an antagonist of �-opioid receptors, is clinically used as adjuvant therapy of alcohol dishabituation. The aim of the present work was to test the effect of 1 mg/kg body weight of naltrexone to revert oxidative stress-related biochemical alterations, in the hippocampus and serum of chronic alcoholic adult rats. Malondialdehyde concentration was increased and glutathione peroxidase activity was decreased in hippocampus and serum of alcohol-treated rats. Naltrexone treatment restored these alterations. The in vitro antioxidant ability of Ntx could not justify these effects considering the doses used. Thus this apparent protective effect of Ntx can only be attributed to its pharmacological effects, as herein discussed.Ministerio de Educacion y Ciencia SAF2010-21317 Universidad Catolica de Valencia "San Vicente Martir" 2012-029-001 Plan Nacional sobre Drogas 2010/059 AI/ICB-Santander 07/1

    An anti-interleukin-2 receptor drug attenuates thelper 1 lymphocytes-mediated inflammation in an acute model of endotoxin-induced uveitis

    Get PDF
    The aim of the present study was to evaluate the anti-inflammatory efficacy of Daclizumab, an anti-interleukin-2 receptor drug, in an experimental uveitis model upon a subcutaneous injection of lipopolysaccharide into Lewis rats, a valuable model for ocular acute inflammatory processes. The integrity of the blood-aqueous barrier was assessed 24 h after endotoxin-induced uveitis by evaluating two parameters: cell count and protein concentration in aqueous humors. The histopathology of all the ocular structures (cornea, lens, sclera, choroid, retina, uvea, and anterior and posterior chambers) was also considered. Enzyme-linked immunosorbent assays of the aqueous humor samples were performed to quantify the levels of the different chemokine and cytokine proteins. Similarly, a biochemical analysis of oxidative stress-related markers was also assessed. The inflammation observed in the anterior chamber of the eyes when Daclizumab was administered with endotoxin was largely prevented since the aqueous humor protein concentration substantially lowered concomitantly with a significant reduction in the uveal and vitreous histopathological grading. Th1 lymphocytes-related cytokines, such as Interleukin-2 and Interferon-c, also significantly reduced with related anti-oxidant systems recovery. Daclizumab treatment in endotoxin-induced uveitis reduced Th1 lymphocytes-related cytokines, such as Interleukin-2 and Interferon gamma, by about 60–70% and presented a preventive role in endotoxin-induced oxidative stress. This antioxidant protective effect of Daclizumab may be related to several of the observed Daclizumab effects in our study, including IL-6 cytokine regulatory properties and a substantial concomitant drop in INFc. Concurrently, Daclizumab treatment triggered a significant reduction in both the uveal histopathological grading and protein concentration in aqueous humors, but not in cellular infiltration

    Unlocking the in vitroanti- inflammatory and antidiabetic potential of Polygonum maritimum

    Get PDF
    Context: Several Polygonum species (Polygonaceae) are used in traditional medicine in Asia, Europe and Africa to treat inflammation and diabetes. Objective: Evaluate the in vitro antioxidant, anti-inflammatory and antidiabetic potential of methanol and dichloromethane extracts of leaves and roots of the halophyte Polygonum maritimum L. Material and methods: Antioxidant activity was determined (up to 1mg/mL) as radical-scavenging activity (RSA) of 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), copper (CCA) and iron (ICA) chelating activities and iron reducing power (FRAP). NO production was measured in lipopolysaccharide (LPS)-stimulated macrophages for 24 h at concentrations up to 100 mu g/mL and antidiabetic potential was assessed by alpha-amylase and alpha-glucosidase inhibition (up to 10 g/mL) assays. The phytochemical composition of the extracts was determined by gas chromatography-mass spectrometry (GC-MS). Results: The methanol leaf extract had the highest activity against DPPH center dot (IC50 = 26 mu g/mL) and ABTS1(+)center dot (IC50 = 140 mu g FRAP (IC50 = 48 mu g/mL) and CCA (IC50 = 770 mu g/mL). Only the dichloromethane leaf extract (LDCM) showed anti-inflammatory activity (IC50 = 48 mu g/mL). The methanol root (IC50 = 19 mu g/mL) and leaf (IC50 = 29 mu g/mL) extracts strongly inhibited baker's yeast alpha-glucosidase, but LDCM had higher rat's alpha-glucosidase inhibition (IC50 = 2527 mu g/mL) than acarbose (IC50 = 4638 mu g/mL). GC-MS analysis identified beta-sitosterol, stigmasterol, 1-octacosanol and linolenic acid as possible molecules responsible for the observed bioactivities. Conclusions: Our findings suggest P. maritimum as a source of high-value health promoting commodities for alleviating symptoms associated with oxidative and inflammatory diseases, including diabetes.XtremeBio project - Foundation for Science and Technology (FCT) [PTDC/MAR-EST/4346/2012]; Portuguese National Budget; FCT [CCMAR/Multi/04326/ 2013, IF/00049/2012, SFRH/BPD/86071/2012, UID/Multi/00612/2013

    Differential hippocampal response to chronic alcohol consumption of young adult and mature adult rats

    Get PDF
    AIMS Early ethanol consumption could be a risk factor for young brain integrity and its maturation, and also for the development of addictive behaviors in adulthood. Neuronal nitric oxide synthase (nNOS) expressing neurons are specifically located in the subgranular layer (SGL) of dentate gyrus and may be relevant for hippocampal neurogenesis. The focus of this work is aimed to determine local changes in the nNOS-like immunoreactive (nNOS-LIR) cell populations of the SGL after chronic ethanol exposure in young adult and mature adult rats. METHODS We used the nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase (NADPH-d) reaction as a qualitative marker of nNOS enzyme activity. We also analyzed the nNOS-LIR cell density by the nNOS immunocytochemistry in order to compare these two methods of labeling. Dorsal striatum (CPu) was also analyzed in order to compare two neural areas with high nNOS-LIR cell density. RESULTS The young adult group showed less hippocampal NADPH-d(+) cell density than the mature adult group. Interestingly, the NADPH-d(+) cell density was increased in the SGL of the young adult ethanol-treated group, whereas it decreased in the mature adult ethanol-treated group, when compared with their respective controls. No change was observed in any of the groups for the hippocampal nNOS-LIR cell density and no differences could be established in CPu for nNOS-LIR and NADPH-d(+) cell densities in any of the groups studied. CONCLUSION The NADPH-d expression is affected by chronic ethanol exposure in opposite ways between both age groups studied. Further studies are needed to evaluate the relative importance of these findings, especially when considering human subject

    Role of retinal pigment epithelium-derived exosomes and autophagy in new blood vessel formation

    Get PDF
    Autophagy and exosome secretion play important roles in a variety of physiological and disease states, including the development of age‐related macular degeneration. Previous studies have demonstrated that these cellular mechanisms share common pathways of activation. Low oxidative damage in ARPE‐19 cells, alters both autophagy and exosome biogenesis. Moreover, oxidative stress modifies the protein and genetic cargo of exosomes, possibly affecting the fate of surrounding cells. In order to understand the connection between these two mechanisms and their impact on angiogenesis, stressed ARPE‐19 cells were treated with a siRNA‐targeting Atg7, a key protein for the formation of autophagosomes. Subsequently, we observed the formation of multivesicular bodies and the release of exosomes. Released exosomes contained VEGFR2 as part of their cargo. This receptor for VEGF—which is critical for the development of new blood vessels—was higher in exosome populations released from stressed ARPE‐19. While stressed exosomes enhanced tube formation, exosomes became ineffective after silencing VEGFR2 in ARPE‐19 cells and were, consequently, unable to influence angiogenesis. Moreover, vessel sprouting in the presence of stressed exosomes seems to follow a VEGF‐independent pathway. We propose that abnormal vessel growth correlates with VEGFR2‐expressing exosomes release from stressed ARPE‐19 cells, and is directly linked to autophagy

    The Effects of Cocaine on Different Redox Forms of Cysteine and Homocysteine, and on Labile, Reduced Sulfur in the Rat Plasma Following Active versus Passive Drug Injections

    Get PDF
    Received: 28 November 2012 / Revised: 19 April 2013 / Accepted: 6 May 2013 / Published online: 16 May 2013 The Author(s) 2013. This article is published with open access at Springerlink.comThe aim of the present studies was to evaluate cocaine-induced changes in the concentrations of different redox forms of cysteine (Cys) and homocysteine (Hcy), and products of anaerobic Cys metabolism, i.e., labile, reduced sulfur (LS) in the rat plasma. The above-mentioned parameters were determined after i.p. acute and subchronic cocaine treatment as well as following i.v. cocaine self-administration using the yoked procedure. Additionally, Cys, Hcy, and LS levels were measured during the 10-day extinction training in rats that underwent i.v. cocaine administration. Acute i.p. cocaine treatment increased the total and protein-bound Hcy contents, decreased LS, and did not change the concentrations of Cys fractions in the rat plasma. In turn, subchronic i.p. cocaine administration significantly increased free Hcy and lowered the total and protein-bound Cys concentrations while LS level was unchanged. Cocaine self-administration enhanced the total and protein-bound Hcy levels, decreased LS content, and did not affect the Cys fractions. On the other hand, yoked cocaine infusions did not alter the concentration of Hcy fractions while decreased the total and protein-bound Cys and LS content. This extinction training resulted in the lack of changes in the examined parameters in rats with a history of cocaine self-administration while in the yoked cocaine group an increase in the plasma free Cys fraction and LS was seen. Our results demonstrate for the first time that cocaine does evoke significant changes in homeostasis of thiol amino acids Cys and Hcy, and in some products of anaerobic Cys metabolism, which are dependent on the way of cocaine administration

    Diabetes and the Brain: Oxidative Stress, Inflammation, and Autophagy

    Get PDF
    Diabetes mellitus is a common metabolic disorder associated with chronic complications including a state of mild to moderate cognitive impairment, in particular psychomotor slowing and reduced mental flexibility, not attributable to other causes, and shares many symptoms that are best described as accelerated brain ageing. A common theory for aging and for the pathogenesis of this cerebral dysfunctioning in diabetes relates cell death to oxidative stress in strong association to inflammation, and in fact nuclear factor κB (NFκB), a master regulator of inflammation and also a sensor of oxidative stress, has a strategic position at the crossroad between oxidative stress and inflammation. Moreover, metabolic inflammation is, in turn, related to the induction of various intracellular stresses such as mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and autophagy defect. In parallel, blockade of autophagy can relate to proinflammatory signaling via oxidative stress pathway and NFκB-mediated inflammation

    Lipoic acid lessens Th1-mediated inflammation in lipopolysaccharide-induced uveitis reducing selectively Th1 lymphocytes-related cytokines release

    No full text
    Infl ammation results in the production of free radicals. We evaluated the anti-infl ammatory and antioxidant capacity of lipoic acid in an experimental uveitis model upon a subcutaneous injection of endotoxin into Lewis rats. The role of oxidative stress in the endotoxin-induced uveitis model is well-known. Besides, the Th1 response classically performs a central part in the immunopathological process of experimental autoimmune uveitis. Exogenous sources of lipoic acid have been shown to exhibit antioxidant and anti-infl ammatory properties. Our results show that lipoic acid treatment plays a preventive role in endotoxin-induced oxidative stress at 24 h post-administration and reduced Th1 lymphocytes-related cytokines by approximately 50 – 60%. Simultaneously, lipoic acid treatment caused a signifi cant reduction in uveal histopathological grading and in the protein concentration in aqueous humors, but not in cellular infi ltration
    corecore