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Diabetes mellitus is a common metabolic disorder associated with chronic complications including a state of mild to moderate
cognitive impairment, in particular psychomotor slowing and reducedmental flexibility, not attributable to other causes, and shares
many symptoms that are best described as accelerated brain ageing. A common theory for aging and for the pathogenesis of this
cerebral dysfunctioning in diabetes relates cell death to oxidative stress in strong association to inflammation, and in fact nuclear
factor 𝜅B (NF𝜅B), a master regulator of inflammation and also a sensor of oxidative stress, has a strategic position at the crossroad
between oxidative stress and inflammation. Moreover, metabolic inflammation is, in turn, related to the induction of various
intracellular stresses such as mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and autophagy defect. In parallel,
blockade of autophagy can relate to proinflammatory signaling via oxidative stress pathway and NF𝜅B-mediated inflammation.

1. Introduction

Diabetes mellitus is a common metabolic disorder which is
associated with chronic complications such as nephropathy,
angiopathy, retinopathy, and peripheral neuropathy. How-
ever, as early as 1922 it was recognised that diabetes also
can lead to cognitive dysfunction [1]. Since then, studies in
experimental models and in patients observed alterations
in neurotransmission, electrophysiological and structural
abnormalities, and neurobehavioral alterations, in partic-
ular cognitive dysfunction and increased risk of depres-
sion [2]. Moreover, the observed cerebral manifestations of
diabetes appear to develop insidiously, largely independent
of diabetes-associated acute metabolic and vascular distur-
bances (such as severe hypo- and hyperglycemic episodes and
stroke). Although the magnitude of these cognitive deficits
appears to bemild tomoderate, they can significantly hamper
daily functioning, adversely affecting quality of life [3].

In spite of this, the concept of central neuropathy has been
controversial for more than 80 years now, but while trying
to describe cognitive impairment in diabetes as a complica-
tion of the disease, the term “diabetic encephalopathy” was

introduced in 1950 [4]. However, this term “encephalopathy”
has not been widely accepted, probably among other rea-
sons, because it does not seem to match with the mild
cognitive problems usually seen in (nondemented) diabetic
patients. More recently it has been suggested that the term
“diabetes-associated cognitive decline” (DACD) describes a
state of mild to moderate cognitive impairment, in particular
psychomotor slowing and reduced mental flexibility, not
attributable to other causes [5]. In addition, it is now clear that
diabetes increases the risk of Alzheimer’s disease, vascular
dementia, and any other type of dementia [6, 7].

2. Pathophysiological Mechanisms Involved in
Brain Damage in Diabetes

Long-term effects of diabetes on the brain are manifested at
structural, neurophysiological, and neuropsychological level,
and multiple pathogenic factors appear to be involved in the
pathogenesis of the cerebral dysfunctioning in diabetes, such
as the hypoglycemic episodes, cerebrovascular alterations,
the role of insulin in the brain, and the mechanisms of
hyperglycemia induced damage [8]. Moreover, the emerging
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view is that the diabetic brain features many symptoms that
are best described as accelerated brain ageing [9].

A common theory, for aging and for the pathogenesis
of this cerebral dysfunctioning in diabetes, relates cell death
to oxidative stress mediated by free radicals [10]. Thus,
hyperglycemia reduces antioxidant levels and concomitantly
increases the production of free radicals. These effects con-
tribute to tissue damage in diabetes mellitus, leading to
alterations in the redox potential of the cell with subsequent
activation of redox-sensitive genes [11].

The brain is especially vulnerable to oxidative damage as
a result of its high oxygen consumption rate, abundant lipid
content, and relative paucity of antioxidant enzymes as com-
pared to other tissues. Neuronal cells are particularly sensitive
to oxidative insults, and therefore reactive oxygen species
(ROS) are involved in many neurodegenerative processes
such as diabetes [12–14]. Although under normal physiologi-
cal conditions a balance exists between the production ofROS
and the antioxidant mechanisms, it has been shown that in
aging tissues oxidative stress increases due to, among others,
decreased activity of antioxidant enzymes [15]. Earlier work
and ample evidence have shown that peroxidative damage
to lipid and protein occurs with the aging process and the
products of these reactions accumulate in the brain with age
[16–19].

Similarly, the activities of superoxide dismutase and
catalase or glutathione peroxidase enzymes, involved in the
antioxidant defense of the diabetic brain, are decreased
[20–23]. However, the possible source of oxidative stress
in brain injury also includes autoxidation of glucose, lipid
peroxidation, and decreased tissue concentrations of low
molecular weight antioxidants such as reduced glutathione
(GSH) [24–27]. This alteration of glutathione levels may be
related to an increased polyol pathway [28] activity as this
leads to a depletion of NADPH which is necessary for the
enzymatic reduction of oxidized glutathione.

Moreover, in these pathological conditions, cellular stress
triggers mitochondrial oxidative damage, which may result
in apoptosis and/or necrosis [29], and apoptosis induced
by oxidative stress has been related to neurogenesis inhi-
bition [30]. Thus, it has been described that DM leads to
alterations in the mitochondrial electron transport chain;
ROS formation, mitochondrial energy metabolism dysfunc-
tion, and oxidative stress are thus being recognized as
the main players in diabetes-related complications [31]. In
this sense, Cardoso et al. have shown that hippocampal
mitochondria of streptozotocin (STZ)-induced diabetic rats
presented higher levels of MDA together with an increased
glutathione disulfide reductase activity and lower manganese
superoxide dismutase (MnSOD) activity and glutathione-
to-glutathione disulfide (GSH/GSSG) ratio. It also showed
impaired oxidative phosphorylation system characterized by
a decreased mitochondrial energization potential and ATP
levels and higher repolarization lag phase [32]. On the other
hand, although insulin is best known for its involvement in
the regulation of glucose metabolism in peripheral tissues,
this hormone also affects numerous brain functions including
cognition, memory, and synaptic plasticity through com-
plex insulin/insulin receptor (IR) signaling pathways [33].

Therefore, considering the important role of insulin in many
aspects of neuronal function in both the peripheral nervous
system and the central nervous system, it is possible that
perturbation of insulin signaling (both insulin deficiency
in T1 diabetes and hyperinsulinemia in T2 diabetes) is in
the pathogenesis of neurological diseases [34] and results in
neurodegeneration.

Until recently, the study of insulin resistance was mainly
focused on metabolic tissues such as muscle and adipose
tissue; recent data, however, suggest that insulin resistance
also develops in the nervous system. Although neurons
are not insulin-dependent, they are insulin-responsive [35].
Insulin receptors are widely expressed in the brain, including
the olfactory bulb, cerebral cortex, hippocampus, hypotha-
lamus, and amygdala. Insulin resistance in sensory neurons
makes cells respond inappropriately to growth factor signals,
and this impairment may contribute to the development
of neurodegeneration and subsequent diabetic neuropathy.
Moreover, insulin regulates mitochondrial metabolism and
oxidative capacity throughPI3K/Akt signaling [36, 37]; there-
fore, decreased Akt signaling by hyperinsulinemia- mediated
IR may have profound effects on mitochondrial function in
neurons and result in subsequent increased oxidative stress
[38]. In fact, two of the leading theories that have emerged
to explain insulin resistance center on mitochondrial func-
tion/dysfunction, although interestingly with opposite views.
In one theory, inherited or acquired mitochondrial dysfunc-
tion is thought to cause an accumulation of intramyocellular
lipids that lead to insulin resistance and implies that strategies
to accelerate flux through𝛽-oxidation should improve insulin
sensitivity [39]. In the second theory, the impact of cellular
metabolic imbalance is viewed in the context of cellular and
mitochondrial bioenergetics, positing that excess fuel relative
to demand increases mitochondrial oxidant production and
emission, ultimately leading to the development of insulin
resistance. In this case, elevated flux via 𝛽-oxidation in the
absence of added demand is viewed as an underlying cause
of the disease. Therefore, mitochondrial-derived oxidative
stress is fairly well established as an underlying mechanism
responsible for the pathological complications associated
with diabetes [40], but it also has a role as a primary factor in
the development of insulin resistance (and subsequent overt
diabetes), since strong experimental evidence from various
animal models utilizing mitochondrial targeted approaches
has established a link between mitochondrial-derived ROS
and insulin resistance in vivo [41, 42].

In conclusion, convincing evidence is now available from
previous studies to prove the role of oxidative stress in the
development of neuronal injury in the diabetic brain and
the beneficial effects of antioxidants. More concretely, the
beneficial effect of lutein and DHA in the brain of diabetic
animals and the way that these substances were able to
ameliorate the oxidative stress present in diabetes has been
studied by our group [27, 43]. However, we must take into
account, that there are also studies which report the lack
of effect of antioxidants in diabetic complications. Thus, Je
et al. [44] reported that vitamin C supplementation alone
shows limited therapeutic benefit in type 1 diabetes and is
more commonly used in combination with vitamin E or
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other agents [44]. Moreover, most of the evidences favoring
the increased oxidative stress in diabetes come from studies
in experimental models of diabetes in which the degree
of hyperglycemia is excessive. Supportive evidence is also
available in studies of human subjects with diabetes; however
interventional studies using select antioxidant supplements
have failed to show significant benefits of supplementation, as
reviewed by Hasanain and Mooradian [45]. The completion
of some of the ongoing large clinical trials will shed additional
light on the clinical merit of antioxidant supplementation.

3. Inflammation in Diabetes

Inflammation represents a fundamental biological process
which stands as the foreground of a large number of acute
and chronic pathological conditions, and this occurs in
response to any alteration of tissue integrity in order to
restore tissue homeostasis through the induction of various
repairmechanisms. Proper regulation of thesemechanisms is
essential to prevent uncontrolled amplification of the initial
inflammatory response and shift from tissue repair towards
collateral damage and disease development [46].

The appropriate recognition of the danger by the host is
primordial for the elaboration of proper adaptive responses.
Sensing of pathogen-associated molecular patterns (PAMPs)
and damage-associated molecular patterns (DAMPs) is
ensured by a complex set-up of pattern-recognition’ recep-
tors (PRRs), which include, among others, the receptor
for advanced glycation end-products (RAGE). PRR activa-
tion triggers a wealth of intracellular signaling pathways,
including kinases (e.g., MAP kinases, PI3 kinase), adaptors,
transcription factors (mainly nuclear factor-𝜅B (NF𝜅B)),
and activator protein-1. Such signaling cascades foster the
expression of cytokines, chemokines, enzymes, growth fac-
tors, and additional molecules that are required for tissue
repair [47] and homeostasis restoration. However, there are
situations in which such restoration may not adequately
occur, resulting in persistent cellular stress, perpetuating and
amplifying the inflammatory response. In these conditions,
the process leads to significant alterations of tissue functions,
with systemic and persistent derangements of homeostasis
[48]. Diabetes and neurodegenerative diseases are typical
examples of these pathological processes associatedwith such
chronic inflammatory changes [49].

The release of reactive oxygen species has long been rec-
ognized as a typical consequence of immune cell stimulation
[50, 51], and both acute and chronic inflammatory states
are coupled with significant alterations of redox equilibrium,
due to the associated enhancement of oxidant generation
[49, 52–54]. Accordingly, mitigating oxidative stress by the
use of antioxidants has been evaluated as a potentially useful
anti-inflammatory strategy in such conditions, as recently
reviewed [55]. Overall, the results of innumerable studies
have clearly pointed out the strong association between
oxidative stress and inflammation. Since responses triggered
by Toll-like receptors (TLRs) are conveyed primarily by
the activation of NF𝜅B, which is a master regulator of
inflammation, controlling the expression of hundreds of

genes implicated in innate immune responses, and also a
redox sensitive nuclear factor involved in the control of a large
number of normal cellular and tissue processes, NF𝜅B has
a strategic position at the crossroad between oxidative stress
and inflammation.

NF𝜅B transcription factors are ubiquitously expressed
in mammalian cells. These proteins are highly conserved
across species, and inmammals theNF𝜅B family (also known
as the Rel family) consists of five members: p50, p52, p65
(also known as RelA), c-Rel, and RelB. Rel family members
function as dimers and the five subunits can homodimerize
or heterodimerize. All family members share a Rel homology
domain, which contains the crucial functional regions for
DNA binding, dimerization, nuclear localization, and inter-
actions with the I𝜅B inhibitory proteins. NF𝜅B dimers exist
in a latent form in the cytoplasm bound by the I𝜅B inhibitory
proteins, and when NF𝜅B-inducing stimuli activate the I𝜅B
kinase complex that phosphorylates I𝜅B, this leads to its
ubiquitination and subsequent degradation in the canonical
NF𝜅B activation pathway. I𝜅B degradation exposes the DNA-
binding domain and nuclear localization sequence of NF𝜅B
and permits its stable translocation to the nucleus and the
regulation of target genes [56]. Thus, activated NF𝜅B enters
the nucleus to induce transcription of a myriad of genes that
mediate diverse cellular processes such as immunity, inflam-
mation, proliferation, apoptosis, and cellular senescence
[57].

Together with the evidences that relate oxidative stress
and inflammation to the pathophysiology of diabetes, studies
performed in a variety of cell and animal based experimental
systems also suggest that NF𝜅B activation is a key event early
in the pathobiology of this disease and its complications [27,
58, 59]. In fact, several studies have highlighted the activation
of NF𝜅B by hyperglycemia and its relationship with diabetic
complications, as reviewed by Patel and Santani in 2009
[59]; thus, hyperglycemia triggers a number of mechanisms
that are thought to underlie diabetic neuropathy. Studies in
different experimental models have established that neuronal
dysfunction is closely associated with the activation of NF𝜅B
and the expression of proinflammatory cytokines [60, 61].
Moreover, NF𝜅B pathway has been revealed as a key molec-
ular system involved in pathological brain inflammation
[62], and also experimental studies [52] have suggested that
neuronal apoptosis, which is related to NF𝜅B activation,
may play an important role in neuronal loss and impaired
cognitive function. Additionally, in the hippocampus of
streptozotocin-treated rats, not only a strong increase in
oxygen reactive species is observed but also a persistent
activation of NF𝜅B is observed [23, 27]. Activated NF𝜅B
can induce cytotoxic products that exacerbate inflammation
and oxidative stress and promote apoptosis [63], leading
to oxidative stress induced cell dysfunction or cell death,
respectively [64]. However, it should not be forgotten that
although NF𝜅B is widely known for its ubiquitous roles
in inflammation and immune responses and in control of
cell division and apoptosis (and these roles are apparent in
the nervous system), neurons and their neighboring cells
employ the NF𝜅B pathway for distinctive functions as well,
ranging from the development to the coordination of cellular
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responses to injury of the nervous system and to brain-
specific processes such as the synaptic signaling that underlies
learning and memory [60]. Therefore, understanding the
function of NF𝜅B transcription factors in the nervous system
is now a new frontier for the general field of NF𝜅B research,
for the investigation of transcriptional regulation in complex
neuronal systems, and for the understanding of pathological
mechanisms of neurodegenerative diseases.

On the other hand, we cannot forget that type 2 (T2D)
diabetes is an overnutrition related disease which usually is
preceded by the metabolic syndrome, a common metabolic
disorder that results from the increasing prevalence of obesity
which includes several interconnected abnormalities such as
insulin resistance, impaired glucose tolerance, dyslipidemia,
and high blood pressure [65]. Moreover, overnutrition is
considered as an independent environmental factor that is
targeted by innate immune system to trigger an atypical
form of inflammation, which leads tometabolic dysfunctions
among others, in the central nervous system (CNS) and
particularly in the hypothalamus [62, 66–69], which indeed
is known to govern several metabolic functions of the body
including appetite control, energy expenditure, carbohydrate
and lipid metabolism, and blood pressure homeostasis [70,
71].

Deeping into the mechanisms that lead to this metabolic
dysfunction, which also affects the CNS, it has been recently
demonstrated that the activation of IKK𝛽/NF𝜅B and conse-
quently the proinflammatory pathway are a relevant feature in
differentmetabolic disorders related to overnutrition [72–74].
The effects of NF𝜅B-mediated metabolic inflammation are
deleterious and can give rise to impairments of normal intra-
cellular signaling and disruptions of metabolic physiology
[62] that have been reported also in the CNS—particularly
in the hypothalamus—which primarily could account for the
development of overnutrition-induced metabolic syndrome
and related disorders such as obesity, insulin resistance,
T2D, and obesity-related hypertension [68, 75, 76].Moreover,
intracellular oxidative stress and mitochondrial dysfunction
seem to be upstream events thatmediate hypothalamic NF𝜅B
activation under overnutrition, and in turn such metabolic
inflammation is reciprocally related to the induction of
various intracellular stresses such as mitochondrial oxidative
stress and endoplasmic reticulum (ER) stress [62]. Thus,
intracellular oxidative stress seems to contribute to metabolic
syndrome and related diseases, including T2D [39, 77, 78],
and also to neurodegenerative diseases [79, 80]. In fact, when
ROS homeostasis is disrupted, excessive ROS are accumu-
lated in the mitochondria and cytoplasm and can cause
oxidative damage to cells [81]. Regarding the ER, existing
evidence also suggests that ER stress is a key link to obesity,
insulin resistance, and type 2 diabetes [82], since this ER stress
can also activate cellular inflammatory pathways which, in
turn, impair cellular functions and lead to metabolic disor-
ders [83] and neurodegenerative diseases [84, 85]. Indeed,
unresolved ER stress can induce mitochondrial changes
and finally cell apoptosis [86]. Moreover, brain ER stress is
known to promote NF-𝜅B activation in the development of
central metabolic dysregulations associated to inflammatory
pathways, since intraventricular infusion of an ER stress

inhibitor suppressed the activation of hypothalamic NF𝜅B by
high-fat diet feeding [68]. In addition, ER stress also appears
to depend on IKK𝛽/NF𝜅B pathway activity, because neither
high-fat diet feeding nor central administration of chemical
ER stress inducer is able to induce hypothalamic ER stress in
mice with central inhibition of IKK𝛽/NF𝜅B pathway [68, 87].
Finally, ER stress also causes cellular accumulation of ROS
associated to oxidative stress [88], which in turn reciprocally
can promote ER stress (see Figure 1).

In the case of ER stress, exposure to high glucose could
induce ER stress by the generation of free radicals, aberrant
protein glycosylation, or increased membrane and protein
turnover. Zhang et al. have also reported that the expres-
sion of C/EBP homology protein (CHOP), the prominent
mediator of the ER stress-induced apoptosis, was markedly
increased in the hippocampus of diabetic rats and have
suggested that this CHOP- ER stress-mediated apoptosismay
be involved in hyperglycemia-induced hippocampal synapses
and neuronal impairment and promote the diabetic cognitive
impairment [89].

4. Autophagy and Diabetes

Autophagy plays a role in the maintenance of function of
organelles such as mitochondria or ER [90, 91], in order
to maintain a healthy and functional intracellular environ-
ment, cells must constantly clean up defective proteins (e.g.,
misfolded proteins overflowing from ER stress) or damaged
organelles (e.g., dysfunctional mitochondria or ER from
prolonged oxidative stress). Although, autophagy is known
primarily as a prosurvival mechanism for cells facing stress
conditions, accumulating evidence indicates that autophagy
can contribute to cell death processes under pathological
conditions [92, 93]. Thus, among others, autophagy defect
has been linked to the development of metabolic syndrome,
diabetes, alcoholism, and lipid abnormalities [94–96], and in
the majority of these cases, the underlying pathogenesis is
related to the failure of autophagy machinery to efficiently
remove defective proteins or damaged organelles from the
cytosol. In fact, chronic intracellular stress such as mito-
chondria or ER stress seems to be the critical upstream
events, since animal studies have shown that in early stages
ER stress or oxidative stress induce adaptive autophagy
upregulation, helping to restore intracellular homeostasis by
disposing a number of harmfulmolecules such as unfolded or
misfolded proteins in ER lumen, cytosolic proteins damaged
by ROS, or even dysfunctional ERs and mitochondria [97,
98]. However, when intracellular stresses remain unresolved,
prolonged autophagy upregulation progresses into autophagy
defect [62] and, in fact, the decreased efficiency of the
autophagic system with age has gained renewed attention as
a result of the increasing number of reports supporting a
role for defective autophagy in the pathogenesis of different
age-related diseases including diabetes among others [99].
In parallel, autophagy pathway can relate to proinflam-
matory signaling via oxidative stress pathway [100], since
mitophagy/autophagy blockade leads to the accumulation of
damaged, ROS-generating mitochondria, and this in turn
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Figure 1: Scheme summarizing the involvement of oxidative stress (mitochondrial dysfunction and ER stress), inflammation, and
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activates the NLRP3 inflammasome (a molecular platform
activated upon signs of cellular “danger” to trigger innate
immune defenses through the maturation of proinflam-
matory cytokines). Moreover, autophagy defect can induce
NF𝜅B-mediated inflammation [101, 102], even in the CNS,
since Meng and Cai reported that defective hypothalamic
autophagy led to hypothalamic inflammation, including the
activation of proinflammatory I𝜅B kinase 𝛽 pathway [103].

Although it is clear that diabetes affects both mitochon-
dria and ER, the role of autophagy in diabetes or metabolism
is yet far from clear, and therefore the role of autophagy in
the pathogenesis of diabetic complications is currently under
intensive investigation.

As described by Hoffman et al., [104] specific candidates
for induction and stimulation of autophagy include insulin
deficiency/resistance [105, 106]; deficiency of insulin growth
factor-1 (IGF-1) and insulin growth factor-1 receptor (IGF-
1R) [104, 107]; hyperglucagonemia [106]; and hyperglycemia

[107].Other candidates for perturbation of autophagy include
alteration of protein synthesis and degradation [108] due to
the oxidative stress of RNA [109, 110], protein damage, and
altered lipid metabolism [94, 111]; increased production of
ketones and aldehydes [112, 113]; and lipid peroxidation [110,
114]. Furthermore, accumulation of oxidized and glycated
proteins, common protein modifications associated with
diabetes, could be in part attributed to defective autophagy
[115].

It is noteworthy that Hoffman et al. have reported that
autophagy is increased in the brains of young T1D patients
with chronic poor metabolic control and increased oxidative
stress [116]. Moreover, the finding of significant expression
of autophagic markers in both white and gray matter is in
keeping with the structural deficits in young patients with
T1D [117, 118] and the white matter atrophy in the frontal and
temporal regions in these diabetic ketoacidosis cases [104].
However there are still few studies focusing on the role of
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autophagy in the brains of T1D patients, and therefore further
research is needed on the relationship between autophagy
and pathogenesis of early onset diabetic encephalopathy in
T1D.
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