55 research outputs found

    Genetic drivers of kidney defects in the digeorge syndrome

    Get PDF
    BACKGROUND The DiGeorge syndrome, the most common of the microdeletion syndromes, affects multiple organs, including the heart, the nervous system, and the kidney. It is caused by deletions on chromosome 22q11.2; the genetic driver of the kidney defects is unknown. METHODS We conducted a genomewide search for structural variants in two cohorts: 2080 patients with congenital kidney and urinary tract anomalies and 22,094 controls. We performed exome and targeted resequencing in samples obtained from 586 additional patients with congenital kidney anomalies. We also carried out functional studies using zebrafish and mice. RESULTS We identified heterozygous deletions of 22q11.2 in 1.1% of the patients with congenital kidney anomalies and in 0.01% of population controls (odds ratio, 81.5; P = 4.5×1014). We localized the main drivers of renal disease in the DiGeorge syndrome to a 370-kb region containing nine genes. In zebrafish embryos, an induced loss of function in snap29, aifm3, and crkl resulted in renal defects; the loss of crkl alone was sufficient to induce defects. Five of 586 patients with congenital urinary anomalies had newly identified, heterozygous protein-Altering variants, including a premature termination codon, in CRKL. The inactivation of Crkl in the mouse model induced developmental defects similar to those observed in patients with congenital urinary anomalies. CONCLUSIONS We identified a recurrent 370-kb deletion at the 22q11.2 locus as a driver of kidney defects in the DiGeorge syndrome and in sporadic congenital kidney and urinary tract anomalies. Of the nine genes at this locus, SNAP29, AIFM3, and CRKL appear to be critical to the phenotype, with haploinsufficiency of CRKL emerging as the main genetic driver

    Variability of diagnostic criteria and treatment of idiopathic nephrotic syndrome across European countries

    Get PDF
    The aim of the surveys conducted by the Idiopathic Nephrotic Syndrome Working Group of the ESPN was to study the possible variability of treatment in Europe at different stages of the disease by means of questionnaires sent to members of the Working Group. Four surveys have been completed: treatment of the first flare, treatment of the first relapse and the issue of steroid dependency, use of rituximab, and the management of steroid-resistant patients. A uniform treatment of the first flare was applied in only three countries, and ten additional centers have adopted one of the three main protocols. Reported treatment of the first relapse was relatively uniform, whereas the use of additional immunosuppressants in steroid dependency was widely variable. Rituximab had already been used in hundreds of patients, although the formal evidence of efficiency in steroid dependency was relatively recent at the time of the survey. The definition of steroid resistance was variable in the European centers, but strikingly, the first-line treatment was uniform throughout the centers and included the combination of prednisone plus calcineurin antagonists. Conclusion: The variability in the approach of idiopathic nephrotic syndrome is unexpectedly large and affects treatment of the first flare, strategies in the case of steroid dependency, as well as the definitions of steroid resistance.What is Known:• Steroids and immunosuppressants are the universal treatment of idiopathic nephrotic syndrome.What is New:• The variability of treatments and strategy of treatment in European centers of pediatric nephrology

    Genetic Drivers of Kidney Defects in the DiGeorge Syndrome

    Get PDF
    Background The DiGeorge syndrome, the most common of the microdeletion syndromes, affects multiple organs, including the heart, the nervous system, and the kidney. It is caused by deletions on chromosome 22q11.2; the genetic driver of the kidney defects is unknown. Methods We conducted a genomewide search for structural variants in two cohorts: 2080 patients with congenital kidney and urinary tract anomalies and 22,094 controls. We performed exome and targeted resequencing in samples obtained from 586 additional patients with congenital kidney anomalies. We also carried out functional studies using zebrafish and mice. Results We identified heterozygous deletions of 22q11.2 in 1.1% of the patients with congenital kidney anomalies and in 0.01% of population controls (odds ratio, 81.5; P=4.5×10(-14)). We localized the main drivers of renal disease in the DiGeorge syndrome to a 370-kb region containing nine genes. In zebrafish embryos, an induced loss of function in snap29, aifm3, and crkl resulted in renal defects; the loss of crkl alone was sufficient to induce defects. Five of 586 patients with congenital urinary anomalies had newly identified, heterozygous protein-altering variants, including a premature termination codon, in CRKL. The inactivation of Crkl in the mouse model induced developmental defects similar to those observed in patients with congenital urinary anomalies. Conclusions We identified a recurrent 370-kb deletion at the 22q11.2 locus as a driver of kidney defects in the DiGeorge syndrome and in sporadic congenital kidney and urinary tract anomalies. Of the nine genes at this locus, SNAP29, AIFM3, and CRKL appear to be critical to the phenotype, with haploinsufficiency of CRKL emerging as the main genetic driver. (Funded by the National Institutes of Health and others.)

    Ramipril and Risk of Hyperkalemia in Chronic Hemodialysis Patients

    Get PDF
    Angiotensin converting enzyme (ACE) inhibitors provide well known cardiorenal-protective benefits added to antihypertensive effects in chronic renal disease. These agents are underused in management of patients receiving hemodialysis (HD) because of common concern of hyperkalemia. However, few studies have investigated effect of renin angiotensin aldosterone system (RAAS) blockade on serum potassium in hemodialysis patients. We assessed the safety of ramipril in patients on maintenance HD. We enrolled 28 adult end stage renal disease (ESRD) patients treated by maintenance HD and prescribed them ramipril in doses of 1.25 to 5 mg per day. They underwent serum potassium concentration measurements before ramipril introduction and in 1 to 3 months afterwards. No significant increase in kalemia was found. Results of our study encourage the use of ACE inhibitors in chronically hemodialyzed patients, but close potassium monitoring is mandatory
    corecore