247 research outputs found
User observations on information sharing (corporate knowledge and lessons learned)
The sharing of 'corporate knowledge' and lessons learned in the NASA aerospace community has been identified by Johnson Space Center survey participants as a desirable tool. The concept of the program is based on creating a user friendly information system that will allow engineers, scientists, and managers at all working levels to share their information and experiences with other users irrespective of location or organization. The survey addresses potential end uses for such a system and offers some guidance on the development of subsequent processes to ensure the integrity of the information shared. This system concept will promote sharing of information between NASA centers, between NASA and its contractors, between NASA and other government agencies, and perhaps between NASA and institutions of higher learning
What doesn't kill you makes you stranger: Dipeptidyl peptidase-4 (CD26) proteolysis differentially modulates the activity of many peptide hormones and cytokines generating novel cryptic bioactive ligands
Dipeptidyl peptidase 4 (DPP4) is an exopeptidase found either on cell surfaces where it is highly regulated in terms of its expression and surface availability (CD26) or in a free/circulating soluble constitutively available and intrinsically active form. It is responsible for proteolytic cleavage of many peptide substrates. In this review we discuss the idea that DPP4-cleaved peptides are not necessarily inactivated, but rather can possess either a modified receptor selectivity, modified bioactivity, new antagonistic activity, or even a novel activity relative to the intact parent ligand.
We examine in detail five different major DPP4 substrates: glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), peptide tyrosine-tyrosine (PYY), and neuropeptide Y (NPY), and stromal derived factor 1 (SDF-1 aka CXCL12). We note that discussion of the cleaved forms of these five peptides are underrepresented in the research literature, and are both poorly investigated and poorly understood, representing a serious research literature gap. We believe they are understudied and misinterpreted as inactive due to several factors. This includes lack of accurate and specific quantification methods, sample collection techniques that are inherently inaccurate and inappropriate, and a general perception that DPP4 cleavage inactivates its ligand substrates.
Increasing evidence points towards many DPP4-cleaved ligands having their own bioactivity. For example, GLP-1 can work through a different receptor than GLP-1R, DPP4-cleaved GIP can function as a GIP receptor antagonist at high doses, and DPP4-cleaved PYY, NPY, and CXCL12 can have different receptor selectivity, or can bind novel, previously unrecognized receptors to their intact ligands, resulting in altered signaling and functionality. We believe that more rigorous research in this area could lead to a better understanding of DPP4’s role and the biological importance of the generation of novel cryptic ligands. This will also significantly impact our understanding of the clinical effects and side effects of DPP4-inhibitors as a class of anti-diabetic drugs that potentially have an expanding clinical relevance. This will be specifically relevant in targeting DPP4 substrate ligands involved in a variety of other major clinical acute and chronic injury/disease areas including inflammation, immunology, cardiology, stroke, musculoskeletal disease and injury, as well as cancer biology and tissue maintenance in aging
Vitamin D Status and Bone and Connective Tissue Turnover in Brown Bears (Ursus arctos) during Hibernation and the Active State
BACKGROUND: Extended physical inactivity causes disuse osteoporosis in humans. In contrast, brown bears (Ursus arctos) are highly immobilised for half of the year during hibernation without signs of bone loss and therefore may serve as a model for prevention of osteoporosis. AIM: To study 25-hydroxy-vitamin D (25OHD) levels and bone turnover markers in brown bears during the hibernating state in winter and during the active state in summer. We measured vitamin D subtypes (D₂ and D₃), calcitropic hormones (parathyroid hormone [PTH], 1,25-dihydroxy-vitamin D [1,25(OH)₂D]) and bone turnover parameters (osteocalcin, ICTP, CTX-I), PTH, serum calcium and PIIINP. MATERIAL AND METHODS: We drew blood from seven immobilised wild brown bears during hibernation in February and in the same bears while active in June. RESULTS: Serum 25-hydroxy-cholecalciferol (25OHD₃) was significantly higher in the summer than in the winter (22.8±4.6 vs. 8.8±2.1 nmol/l, two tailed p-2p = 0.02), whereas 25-hydroxy-ergocalciferol (25OHD₂) was higher in winter (54.2±8.3 vs. 18.7±1.7 nmol/l, 2p<0.01). Total serum calcium and PTH levels did not differ between winter and summer. Activated 1,25(OH)₂D demonstrated a statistically insignificant trend towards higher summer levels. Osteocalcin levels were higher in summer than winter, whereas other markers of bone turnover (ICTP and CTX-I) were unchanged. Serum PIIINP, which is a marker of connective tissue and to some degree muscle turnover, was significantly higher during summer than during winter. CONCLUSIONS: Dramatic changes were documented in the vitamin D₃/D₂ ratio and in markers of bone and connective tissue turnover in brown bears between hibernation and the active state. Because hibernating brown bears do not develop disuse osteoporosis, despite extensive physical inactivity we suggest that they may serve as a model for the prevention of this disease
Loss of histone methyltransferase Ezh2 stimulates an osteogenic transcriptional program in chondrocytes but does not affectcartilage development
Ezh2 is a histone methyltransferase that suppresses osteoblast maturation and skeletal development. We evaluated the roleof Ezh2 in chondrocyte lineage differentiation and endochondral ossification. Ezh2 was genetically inactivated in the mesenchymal, osteoblastic, and chondrocytic lineages in mice using the Prrx1-Cre,Osx1-Cre, and Col2a1-Cre drivers, respectively. Wild-type and conditional knockout mice were phenotypically assessed by grossmorphology, histology, and micro-CT imaging. Ezh2-deficient chondrocytes in micromass culture models were evaluated usingRNA-sequencing, histologic evaluation, and western blotting. Aged mice with Ezh2 deficiency were also evaluated for prematuredevelopment of osteoarthritis using radiographic analysis. Ezh2 deficiency in murine chondrocytes reduced bone density at 4 weeks of age, although caused no other gross developmentaleffects. Knockdown of Ezh2 in chondrocyte micromass cultures resulted in a global reduction in trimethylation of histone 3lysine 27 (H3K27me3) and altered differentiation in vitro. RNA-seq analysis revealed enrichment of an osteogenic gene expressionprofile in Ezh2 deficient chondrocytes. Joint development proceeded normally in the absence of Ezh2 in chondrocytes withoutinducing excessive hypertrophy or premature osteoarthritis in vivo. In summary, loss of Ezh2 reduced H3K27me3 levels, increased expression of osteogenic genes in chondrocytes, and resulted ina transient post-natal bone phenotype. Remarkably, Ezh2 activity is dispensable for normal chondrocyte maturation and endochondralossification in vivo, even though it appears to have a critical role during early stages of mesenchymal lineage-commitment
Influence of family and friend smoking on intentions to smoke and smoking-related attitudes and refusal self-efficacy among 9-10 year old children from deprived neighbourhoods: a cross-sectional study.
BACKGROUND: Smoking often starts in early adolescence and addiction can occur rapidly. For effective smoking prevention there is a need to identify at risk groups of preadolescent children and whether gender-specific intervention components are necessary. This study aimed to examine associations between mother, father, sibling and friend smoking and cognitive vulnerability to smoking among preadolescent children living in deprived neighbourhoods. METHODS: Cross-sectional data was collected from 9-10 year old children (n =1143; 50.7% girls; 85.6% White British) from 43 primary schools in Merseyside, England. Children completed a questionnaire that assessed their smoking-related behaviour, intentions, attitudes, and refusal self-efficacy, as well as parent, sibling and friend smoking. Data for boys and girls were analysed separately using multilevel linear and logistic regression models, adjusting for individual cognitions and school and deprivation level. RESULTS: Compared to girls, boys had lower non-smoking intentions (P = 0.02), refusal self-efficacy (P = 0.04) and were less likely to agree that smoking is 'definitely' bad for health (P < 0.01). Friend smoking was negatively associated with non-smoking intentions in girls (P < 0.01) and boys (P < 0.01), and with refusal self-efficacy in girls (P < 0.01). Sibling smoking was negatively associated with non-smoking intentions in girls (P < 0.01) but a positive association was found in boys (P = 0.02). Boys who had a smoking friend were less likely to 'definitely' believe that the smoke from other people's cigarettes is harmful (OR 0.57, 95% CI: 0.35 to 0.91, P = 0.02). Further, boys with a smoking friend (OR 0.38, 95% CI: 0.21 to 0.69, P < 0.01) or a smoking sibling (OR 0.45, 95% CI: 0.21 to 0.98) were less likely to 'definitely' believe that smoking is bad for health. CONCLUSION: This study indicates that sibling and friend smoking may represent important influences on 9-10 year old children's cognitive vulnerability toward smoking. Whilst some differential findings by gender were observed, these may not be sufficient to warrant separate prevention interventions. However, further research is needed
Age-related increase of kynurenine enhances miR29b-1-5p to decrease both CXCL12 signaling and the epigenetic enzyme Hdac3 in bone marrow stromal cells
Mechanisms leading to age-related reductions in bone formation and subsequent osteoporosis are still incompletely understood. We recently demonstrated that kynurenine (KYN), a tryptophan metabolite, accumulates in serum of aged mice and induces bone loss. Here, we report on novel mechanisms underlying KYN's detrimental effect on bone aging. We show that KYN is increased with aging in murine bone marrow mesenchymal stem cells (BMSCs). KYN reduces bone formation via modulating levels of CXCL12 and its receptors as well as histone deacetylase 3 (Hdac3). BMSCs responded to KYN by significantly decreasing mRNA expression levels of CXCL12 and its cognate receptors, CXCR4 and ACKR3, as well as downregulating osteogenic gene RUNX2 expression, resulting in a significant inhibition in BMSCs osteogenic differentiation. KYN's effects on these targets occur by increasing regulatory miRNAs that target osteogenesis, specifically miR29b-1-5p. Thus, KYN significantly upregulated the anti-osteogenic miRNA miR29b-1-5p in BMSCs, mimicking the up-regulation of miR-29b-1-5p in human and murine BMSCs with age. Direct inhibition of miR29b-1-5p by antagomirs rescued CXCL12 protein levels downregulated by KYN, while a miR29b-1-5p mimic further decreased CXCL12 levels. KYN also significantly downregulated mRNA levels of Hdac3, a target of miR-29b-1-5p, as well as its cofactor NCoR1. KYN is a ligand for the aryl hydrocarbon receptor (AhR). We hypothesized that AhR mediates KYN's effects in BMSCs. Indeed, AhR inhibitors (CH-223191 and 3',4'-dimethoxyflavone [DMF]) partially rescued secreted CXCL12 protein levels in BMSCs treated with KYN. Importantly, we found that treatment with CXCL12, or transfection with an miR29b-1-5p antagomir, downregulated the AhR mRNA level, while transfection with miR29b-1-5p mimic significantly upregulated its level. Further, CXCL12 treatment downregulated IDO, an enzyme responsible for generating KYN. Our findings reveal novel molecular pathways involved in KYN's age-associated effects in the bone microenvironment that may be useful translational targets for treating osteoporosis
Simulation and background characterisation of the SABRE South experiment
SABRE (Sodium iodide with Active Background REjection) is a direct detection
dark matter experiment based on arrays of radio-pure NaI(Tl) crystals. The
experiment aims at achieving an ultra-low background rate and its primary goal
is to confirm or refute the results from the DAMA/LIBRA experiment. The SABRE
Proof-of-Principle phase was carried out in 2020-2021 at the Gran Sasso
National Laboratory (LNGS), in Italy. The next phase consists of two full-scale
experiments: SABRE South at the Stawell Underground Physics Laboratory, in
Australia, and SABRE North at LNGS. This paper focuses on SABRE South and
presents a detailed simulation of the detector, which is used to characterise
the background for dark matter searches including DAMA/LIBRA-like modulation.
We estimate an overall background of 0.72 cpd/kg/keV in the energy range
16 keV primarily due to radioactive contamination in the crystals.
Given this level of background and considering that the SABRE South has a
target mass of 50 kg, we expect to exclude (confirm) DAMA/LIBRA modulation at
within 2.5 years of data taking
Histone Deacetylase 3 Depletion in Osteo/Chondroprogenitor Cells Decreases Bone Density and Increases Marrow Fat
Histone deacetylase (Hdac)3 is a nuclear enzyme that contributes to epigenetic programming and is required for embryonic development. To determine the role of Hdac3 in bone formation, we crossed mice harboring loxP sites around exon 7 of Hdac3 with mice expressing Cre recombinase under the control of the osterix promoter. The resulting Hdac3 conditional knockout (CKO) mice were runted and had severe deficits in intramembranous and endochondral bone formation. Calvarial bones were significantly thinner and trabecular bone volume in the distal femur was decreased 75% in the Hdac3 CKO mice due to a substantial reduction in trabecular number. Hdac3-CKO mice had fewer osteoblasts and more bone marrow adipocytes as a proportion of tissue area than their wildtype or heterozygous littermates. Bone formation rates were depressed in both the cortical and trabecular regions of Hdac3 CKO femurs. Microarray analyses revealed that numerous developmental signaling pathways were affected by Hdac3-deficiency. Thus, Hdac3 depletion in osterix-expressing progenitor cells interferes with bone formation and promotes bone marrow adipocyte differentiation. These results demonstrate that Hdac3 inhibition is detrimental to skeletal health
Age-associated changes in microRNAs affect the differentiation potential of human mesenchymal stem cells: Novel role of miR-29b-1-5p expression
Age-associated osteoporosis is widely accepted as involving the disruption of osteogenic stem cell populations and their functioning. Maintenance of the local bone marrow (BM) microenvironment is critical for regulating proliferation and differentiation of the multipotent BM mesenchymal stromal/stem cell (BMSC) population with age. The potential role of microRNAs (miRNAs) in modulating BMSCs and the BM microenvironment has recently gained attention. However, miRNAs expressed in rapidly isolated BMSCs that are naïve to the non-physiologic standard tissue culture conditions and reflect a more accurate in vivo profile have not yet been reported. Here we directly isolated CD271 positive (+) BMSCs within hours from human surgical BM aspirates without culturing and performed microarray analysis to identify the age-associated changes in BMSC miRNA expression. One hundred and two miRNAs showed differential expression with aging. Target prediction and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the up-regulated miRNAs targeting genes in bone development pathways were considerably enriched. Among the differentially up-regulated miRNAs the novel passenger strand miR-29b-1-5p was abundantly expressed as a mature functional miRNA with aging. This suggests a critical arm-switching mechanism regulates the expression of the miR-29b-1-5p/3p pair shifting the normally degraded arm, miR-29b-1-5p, to be the dominantly expressed miRNA of the pair in aging. The normal guide strand miR-29b-1-3p is known to act as a pro-osteogenic miRNA. On the other hand, overexpression of the passenger strand miR-29b-1-5p in culture-expanded CD271+ BMSCs significantly down-regulated the expression of stromal cell-derived factor 1 (CXCL12)/ C-X-C chemokine receptor type 4 (SDF-1(CXCL12)/CXCR4) axis and other osteogenic genes including bone morphogenetic protein-2 (BMP-2) and runt-related transcription factor 2 (RUNX2). In contrast, blocking of miR-29b-1-5p function using an antagomir inhibitor up-regulated expression of BMP-2 and RUNX2 genes. Functional assays confirmed that miR-29b-1-5p negatively regulates BMSC osteogenesis in vitro. These novel findings provide evidence of a pathogenic anti-osteogenic role for miR-29b-1-5p and other miRNAs in age-related defects in osteogenesis and bone regeneration
Protection of Visual Functions by Human Neural Progenitors in a Rat Model of Retinal Disease
BACKGROUND: A promising clinical application for stem and progenitor cell transplantation is in rescue therapy for degenerative diseases. This strategy seeks to preserve rather than restore host tissue function by taking advantage of unique properties often displayed by these versatile cells. In studies using different neurodegenerative disease models, transplanted human neural progenitor cells (hNPC) protected dying host neurons within both the brain and spinal cord. Based on these reports, we explored the potential of hNPC transplantation to rescue visual function in an animal model of retinal degeneration, the Royal College of Surgeons rat. METHODOLOGY/PRINCIPAL FINDINGS: Animals received unilateral subretinal injections of hNPC or medium alone at an age preceding major photoreceptor loss. Principal outcomes were quantified using electroretinography, visual acuity measurements and luminance threshold recordings from the superior colliculus. At 90–100 days postnatal, a time point when untreated rats exhibit little or no retinal or visual function, hNPC-treated eyes retained substantial retinal electrical activity and visual field with near-normal visual acuity. Functional efficacy was further enhanced when hNPC were genetically engineered to secrete glial cell line-derived neurotrophic factor. Histological examination at 150 days postnatal showed hNPC had formed a nearly continuous pigmented layer between the neural retina and retinal pigment epithelium, as well as distributed within the inner retina. A concomitant preservation of host cone photoreceptors was also observed. CONCLUSIONS/SIGNIFICANCE: Wild type and genetically modified human neural progenitor cells survive for prolonged periods, migrate extensively, secrete growth factors and rescue visual functions following subretinal transplantation in the Royal College of Surgeons rat. These results underscore the potential therapeutic utility of hNPC in the treatment of retinal degenerative diseases and suggest potential mechanisms underlying their effect in vivo
- …