89 research outputs found

    Ultra-flat wideband single-pump Raman-enhanced parametric amplification

    Get PDF
    We experimentally optimize a single pump fiber optical parametric amplifier in terms of gain spectral bandwidth and gain variation (GV). We find that optimal performance is achieved with the pump tuned to the zero-dispersion wavelength of dispersion stable highly nonlinear fiber (HNLF). We demonstrate further improvement of parametric gain bandwidth and GV by decreasing the HNLF length. We discover that Raman and parametric gain spectra produced by the same pump may be merged together to enhance overall gain bandwidth, while keeping GV low. Consequently, we report an ultra-flat gain of 9.6±0.5 dB over a range of 111 nm (12.8 THz) on one side of the pump. Additionally, we demonstrate amplification of a 60 Gbit/s QPSK signal tuned over a portion of the available bandwidth with OSNR penalty less than 1 dB for Q2 below 14 dB

    Theory of quantum frequency translation of light in optical fiber: application to interference of two photons of different color

    Full text link
    We study quantum frequency translation and two-color photon interference enabled by the Bragg scattering four-wave mixing process in optical fiber. Using realistic model parameters, we computationally and analytically determine the Green function and Schmidt modes for cases with various pump-pulse lengths. These cases can be categorized as either "non-discriminatory" or "discriminatory" in regards to their propensity to exhibit high-efficiency translation or high-visibility two-photon interference for many different shapes of input wave packets or for only a few input wave packets, respectively. Also, for a particular case, the Schmidt mode set was found to be nearly equal to a Hermite-Gaussian function set. The methods and results also apply with little modification to frequency conversion by sum-frequency conversion in optical crystals

    Continuous wave tunable fiber optical parametric oscillator with double-pass pump configuration

    Get PDF
    We demonstrate a continuous wave tunable fiber optical parametric oscillator in a Fabry–Perot cavity consisting of a 500-m highly nonlinear fiber. In this work, the pump propagates in both directions together with the signal, thus making full use of its parametric gain. The resultant laser peak power is uneven across the wavelength range of interest due to wavelength-dependent phase modulation by the single-mode fiber sections in the cavity. This can be solved by filtering the idler spectral component from the oscillating cavity

    Inferring the dynamics of oscillatory systems using recurrent neural networks

    Full text link
    We investigate the predictive power of recurrent neural networks for oscillatory systems not only on the attractor, but in its vicinity as well. For this we consider systems perturbed by an external force. This allows us to not merely predict the time evolution of the system, but also study its dynamical properties, such as bifurcations, dynamical response curves, characteristic exponents etc. It is shown that they can be effectively estimated even in some regions of the state space where no input data were given. We consider several different oscillatory examples, including self-sustained, excitatory, time-delay and chaotic systems. Furthermore, with a statistical analysis we assess the amount of training data required for effective inference for two common recurrent neural network cells, the long short-term memory and the gated recurrent unit.Comment: 9 pages, 7 figure

    Simple geometric interpretation of signal evolution in phase-sensitive fibre optic parametric amplifier

    Get PDF
    Visualisation of complex nonlinear equation solutions is a useful analysis tool for various scientific and engineering applications. We have re-examined the geometrical interpretation of the classical nonlinear four-wave mixing equations for the specific scheme of a phase sensitive one-pump fiber optical parametric amplification, which has recently attracted revived interest in the optical communications due to potential low noise properties of such amplifiers. Analysis of the phase portraits of the corresponding dynamical systems provide valuable additional insight into field dynamics and properties of the amplifiers. Simple geometric approach has been proposed to describe evolution of the waves, involved in phase-sensitive fiber optical parametric amplification (PS-FOPA) process, using a Hamiltonian structure of the governing equations. We have demonstrated how the proposed approach can be applied to the optimization problems arising in the design of the specific PS-FOPA scheme. The method considered here is rather general and can be used in various applications

    Gain through losses in nonlinear optics

    Get PDF
    Instabilities of uniform states are ubiquitous processes occurring in a variety of spatially extended nonlinear systems. These instabilities are at the heart of symmetry breaking, condensate dynamics, self-organization, pattern formation and noise amplification across diverse disciplines, including physics, chemistry, engineering and biology. In nonlinear optics, modulation instabilities are generally linked to the so-called parametric amplification process, which occurs when certain phase-matching or quasi-phase-matching conditions are satisfied. In the present review article, we summarize the principle results on modulation instabilities and parametric amplification in nonlinear optics, with special emphasis on optical fibres. We then review state-of-the-art research about a peculiar class of modulation instabilities and signal amplification processes induced by dissipation in nonlinear optical systems. Losses applied to certain parts of the spectrum counterintuitively lead to the exponential growth of the damped mode themselves, causing gain through losses. We discuss the concept of imaging of losses into gain, showing how to map a given spectral loss profile into a gain spectrum. We demonstrate with concrete examples that dissipation-induced modulation instability, apart from being of fundamental theoretical interest, may pave the way towards the design of a new class of tuneable fibre-based optical amplifiers, optical parametric oscillators, frequency comb sources and pulsed lasers

    Modifications of single-wall carbon nanotubes upon oxidative purification treatments

    Get PDF
    A systematic characterization of single-wall carbon nanotube (SWCNT) material after successive purification steps, including reflux treatment with nitric acid, air oxidation, and annealing, has been performed. Inductively coupled plasma–optical emission spectroscopy shows that a considerable reduction of the metal impurities by up to 95% can be obtained by the nitric acid reflux treatment. During this process, Raman spectroscopy clearly proves that HNO3 molecules are intercalated into the bundles of SWCNTs. At the same time, SWCNTs have suffered a high degree of degradation and defects are being introduced. The subsequent thermal processes lead to the removal of further defect carbon materials and to the almost complete de-intercalation of the HNO3 molecules. Transmission electron microscopy reveals that the remaining SWCNT bundles tend to form thick bundles. Thus the applied purification process results in a high-purity SWCNT material with a drastically reduced content of metal nanoparticles and composed of large bundles of SWCNTs.This work was supported by the European Commission under the Research Training Network contract NANOCOMP (HPRN-CT-2000-00037).Peer reviewe

    Sensitivity of single wall carbon nanotubes to oxidative processing: structural modification, intercalation and functionalisation

    Get PDF
    The effect of oxidation on modification of single wall carbon nanotubes (SWCNTs) through successive purification steps has been studied. The efficient elimination of metal impurities has been followed by induced coupled plasma spectroscopy. Upon acid treatment, Raman spectroscopy clearly proofed that HNO3 molecules were intercalated into the bundles of SWCNTs. At the same time, SWCNTs also have suffered a high degree of degradation and defects were introduced. The subsequent thermal processes led to the removal of further defect carbon materials and to the almost complete de-intercalation of the HNO3 molecules. Changes in the structure of the SWCNT bundles have been observed by transmission electron microscopy. While bundles tend to separate upon acid treatment, after the complete purification process, the remaining SWCNTs tend to form thick bundles again. The existence of functional groups in the raw single wall carbon nanotubes material and their modification and almost complete removal after the final annealing step has been studied by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and temperature programmed desorption. Nitrogen adsorption isotherms analysed according to Brunauer–Emmet–Teller showed important changes in the pore volume and surface area through the purification steps.This work was supported by the European Commission under the Research Training Network contract NANOCOMP (HPRN-CT-2000-00037).Peer reviewe

    High-power continuous-wave operation of a fiber optical parametric oscillator in L and U bands

    No full text
    Fiber optical parametric oscillators (OPOs), based on a highly-efficient four-wave mixing process in a chi((3)) medium, are reviewed. Their capability to provide very large tuning ranges with high output power is discussed. A novel architecture for CW fiber OPOs is presented, which has allowed us to significantly extend the performance of these devices. To do so we used: (i) a highly-nonlinear fiber (HNLF) as the parametric gain medium; (ii) a narrowband tunable intracavity filter; (iii) a high output coupling fraction from the feedback loop (up to 3 dB). With these features, we have been able to obtain excellent performance in terms of output power and tuning range, even with a reduced pump power. With only about 2 W of pump power, we have obtained the following performances: (i) tuning range of 254 nm; (ii) output power in excess of 1 W at some wavelengths; (iii) external conversion efficiency in excess of 60% at some wavelengths; (iv) linewidth as low as 8 GHz. This architecture of fiber OPO can be used for providing narrow linewidth tunable high-power CW radiation over hundreds of nanometers. Such sources could find applications in remote sensing, optical communication, nonlinear optics, etc
    corecore