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Abstract: In this paper we consider frequency translation enabled by
Bragg scattering, a four-wave mixing process. First we introduce the
theoretical background of the Green function formalism and the Schmidt
decomposition. Next the Green functions for the low-conversion regime
are derived perturbatively in the frequency domain, using the methods
developed for three-wave mixing, then transformed to the time domain.
These results are also derived and verified using an alternative time-domain
method, the results of which are more general. For the first time we include
the effects of convecting pumps, a more realistic assumption, and show that
separability and arbitrary reshaping is possible. This is confirmed numer-
ically for Gaussian pumps as well as higher-order Hermite-Gaussian pumps.
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48. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton
states,” Phys. Rev. A 64, 063815 (2001).

49. A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Gen-
eration of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric
downconversion,” Laser Phys. 15, 146–161 (2005).

50. G. B. Whitham, Linear and Nonlinear Waves (Wiley, 1974), Chap. 2.
51. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
52. G. F. Simmons, Differential Equations with Applications and Historical Notes, 2nd. ed. (McGraw-Hill, 1991).
53. C. J. McKinstrie and D. S. Cargill, “Simultaneous frequency conversion, regeneration and reshaping of optical

signals,” Opt. Express 20, 6881–6886 (2012).
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1. Introduction

As the computational needs of the world keep increasing, quantum information (QI) processing
is of increasing interest [1, 2]. A fundamental process in QI is Hong-Ou-Mandel interference
(HOM), in which two photons interfere through a quantum optical effect [3]. Originally HOM
interference was used to measure the delay between photons, but it has recently also been used
in a scheme for quantum computation using linear optics [4, 5].

For quantum key distribution and continuous variable teleportation it has been shown that
inseparable three-mode entanglement is useful [6]. This has been demonstrated in optical crys-
tals using consecutive nonlinear optical interactions in resonance [6–9]. Recently it has been
demonstrated, theoretically and experimentally, that three-color tripartite entanglement is pos-
sible in an optical parametric oscillator across a wide frequency range [10, 11].

A reliable and noise-free process for the translation (frequency conversion without conjuga-
tion) of a quantum-state from one frequency to another is required for QI to be able to send
states from one quantum node to another [1, 2]. These states could be stored in quantum mem-
ories corresponding to wavelengths from 300–800 nm that need to be transmitted over a tradi-
tional optical link with the low-loss windows in the range 1300–1600 nm [12–14]. It is impor-
tant to note that this process does not violate the no-cloning theorem since the original state is
destroyed in the process [15]. Quantum frequency conversion (QFC) was first investigated using
three-wave mixing (TWM) in optical crystals where a strong pump p mitigates the conversion
from the signal s to the idler r, i.e. πs ↔ πp + πr where π j represents a photon at frequency
ω j, j ∈ {p,r,s}. The theoretical ground-work for QFC using TWM was presented in [16, 17]
and first demonstrated experimentally in [18]. This process has been used for higher-efficiency
single-photon detection using frequency up-conversion [19–21] and also for quantum networks
using frequency down-conversion [22]. It has been demonstrated theoretically that TWM al-
lows reshaping of pulses (i.e. from a continuous-wave to a short pulse and vice versa) when
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using spectral phase modulation and propagation [13] or using dispersion engineering [23].
This is an important result since the states emitted from current quantum memory units have
a pulse width many times larger than what is desired for traditional optical communication
links [13, 14, 24, 25].

QFC is also possible using non-degenerate four-wave mixing (FWM) in an optical-fiber [26].
It is in the form of Bragg scattering (BS), which is characterized by two strong pumps p and q
that interact with two sidebands r and s such that πp+πs ↔ πq+πr. See Fig. 1 for the frequency
locations of the four fields. This process has been used classically to allow FC (frequency
conversion) over a wide frequency range [27–29]. The advantages of BS are that it is tunable
[30], has low-noise transfer [31], and allows for very distant FC (more than 200 nm) [32, 33].
BS has also been used to FC single photons [34].

One advantage of QFC using four-wave mixing in optical fibers is that the emitted photon
wavepacket has a transverse distribution that is already mode-matched to existing transmission
fibers. Also it allows for a very broad bandwidth of conversion as well as coupling from the
visible to the telecom band and inter-telcom band conversion [26]. The quantum-noise proper-
ties of parametric amplification were considered in [35,36] and it has theoretically been shown
that BS allows for noiseless QFC [26]. BS has also been shown theoretically to allow HOM-
interference between photons of different colors [37, 38].

In this paper we describe the Green-function formalism for FC and the Schmidt decomposi-
tion in Section 2. The advantage of the Schmidt decomposition is that it allows for an easy in-
terpretation of the results as it describes the natural modes of the process and the conversion be-
tween them. In Section 3 FC is solved in the perturbative regime, i.e. low energy-conversion ef-
ficiency. The low-efficiency regime allows simple analytic solutions, including the Schmidt de-
composition, which provide baseline theoretical results to which to compare higher-efficiency
results typically obtained numerically, where it is found that up to about 50 % efficiency the
exact numerical results bear high similarity to the perturbative ones [38]. The walk-off (pump
convection) between the pumps is ignored. In Section 4 convection of the pumps is included and
the differences between the two models highlighted. In both cases the results are decomposed
and the Schmidt coefficients (mode-conversion efficiencies) and the Schmidt modes (input and
output modes) are related to physical parameters: the pump energy, pump width, fiber length
and the dispersion-induced sideband walk-off. We find that re-shaping is indeed possible using
BS, due to the presence of the two pumps. Furthermore this process does not require dispersion
engineering or additional processing like what is required for TWM.

2. General formalism of FC

Frequency conversion using four-wave mixing (FWM) includes the two pumps p and q as well
as the two sidebands r and s, and comes in two different flavors: near and far conversion, see
Fig. 1. This process is governed by the coupled-mode equations (CMEs) [26, 38]

(∂z +βr∂t)Ar = iγpq As, (1)

(∂z +βs∂t)As = i
∗

γpq Ar, (2)

where ∂z and ∂t are partial derivatives with respect to z and t respectively, βr and βs are the
group slownesses (inverse group speeds) of the idler and the signal respectively, while Ar(t,z)
and As(t,z) are the corresponding sideband amplitudes. Finally, γpq = γAp(t −βsz)A∗

q(t −βrz)
which is based on the reasonable assumption that pump p co-propagates with sideband s and
pump q co-propagates with sideband r [38]. In the case where the four fields are co-polarized
and furthermore when the pumps fulfill the normalization condition

∫
|Aj(t)|2 dt = 1, we write

γ = 2γ K(EpEq)
1/2 where γ K is the Kerr nonlinearity coefficient and Ej, j ∈ {p,q}, are the
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ω
p q ω0

r s
ω

p r ω0
q s

(a) (b)

Fig. 1. (a) The placement in the frequency spectrum of the two pumps p and q along with
the sidebands s and i for frequency conversion in the near-conversion regime. ω0 is the
zero-dispersion frequency. In this case the two pumps are closely spaced in frequency.
(b) Illustration of frequency conversion in the far-conversion regime. Here the pumps are
farther from each other. Arrows pointing up denote creation of photons and arrows pointing
down destruction of photons.

pump energies. In the low-efficiency regime self-phase and cross-phase modulation are neg-
ligible. Intra-channel dispersion was also neglected which is a reasonable assumption for a
recent experiment [34, 38] and a wide variety of related experiments. The case with different
polarizations is considered in [35, 39–41]. The effect of spontaneous Raman scattering (SRS)
is not modeled by Eqs. (1) and (2). The effect of SRS is minimized for very small or very large
(� 13THz) frequency shifts. Very large frequency shifts were demonstrated in [32, 33]. As
shown in [42] SRS is weaker for cross-polarized signals than co-polarized signals, so utiliz-
ing vector BS might diminish the effect. In [34] SRS was minimized by having the pumps at
longer wavelengths than the sidebands, which meant that SRS was observed but FC was still
achievable.

Equations (1) and (2) also apply to quantum mechanical operators, where the classical fields
Aj are replaced with the mode operators â j [26, 34]. It is known that beam splitters do not add
excess noise [43], and since FC by BS has mathematically equivalent input-output (IO) relations
it does also not add excess noise [26]. The mode operators satisfy the boson commutation
relations [

âi(t), â j(t
′)
]
= 0 and

[
âi(t), â

†
j(t

′)
]
= δi j δ (t − t ′), (3)

with i, j ∈ {r,s}, δi j is the Kronecker delta and δ (t − t ′) is the Dirac delta function. The CMEs
are valid in the so-called parametric approximation, in which the pumps are treated as strong
continuous fields, and for which quantum fluctuations are ignored. The weak sidebands, how-
ever, are treated quantum mechanically.

Using the Green-function formalism, it is possible to write the solution of the CMEs in the
IO form [37,38]

Aj(t, l) = ∑
k

∫ ∞

−∞
Gjk(t, l; t

′,0)Ak(t
′,0)dt ′. (4)

From this equation, the output of mode j at (t, l) is described by a function Gjk that represents
the influence of the input-mode k at (t ′,0). In our example with two sidebands k ∈ {r,s}, Eq. (4)
leads to

Ar(t) =
∫ ∞

−∞
Grr(t; t

′)Ar(t
′)dt ′+

∫ ∞

−∞
Grs(t; t

′)As(t
′)dt ′, (5)

where the short notation Gjk(t; t ′)=Gjk(t, l; t ′,0) has been introduced and with t and t ′ as output
and input times respectively. Similarly, As is described by the shape of itself and sideband r at
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Input time Output time

0
z

t′

t− βsl

t

t− βrl

Fig. 2. A characteristic diagram for the generation of an idler from pulsed pumps for βr =
−βs. The solid diagonal lines show the influence from the signal at the input point (t′,0)
whereas the dashed lines show the domain that influences the output idler at (t, l) from the
time-dependent pumps.

the input of the fiber. Physically this means that Grr(t; t ′) and Gss(t; t ′) describe the influence
on the output at time t, from the input of the field itself at time t ′, see Fig. 2. In a similar way,
the cross Green functions Grs(t; t ′) and Gsr(t; t ′) concern the influence on one sideband at time
t, from the other sideband at the input at time t ′.

It is convenient to introduce the singular value (Schmidt) decomposition of the Green’s func-
tions since it allows us to split the Green function into products of functions that depend only
on the input and output times at the cost of an infinite sum [44]. In general we write

G(t; t ′) = ∑
n

vn(t)λ
1/2
n un(t

′), (6)

where the functions un and vn are the Schmidt modes normalized with respect to the integral of

the absolute value squared. The normalized functions as well as the Schmidt coefficients λ1/2
n

are found from the integral eigenvalue equations
∫ ∞

−∞
K1(t, t

′)vn(t
′)dt ′ = λnvn(t), (7)

∫ ∞

−∞
K2(t, t

′)un(t
′)dt ′ = λnun(t), (8)

with the kernels K1(t, t ′) ≡
∫

G(t; t2)G∗(t ′; t2)dt2 and K2(t, t ′) ≡
∫

G(t1; t)G∗(t1; t ′)dt1. We re-
mind the reader that the first argument of the Green function corresponds to the output and
the second argument to the input. The physical interpretation of the Schmidt decomposition is
thus that it takes the input mode un and converts it to the output mode vn with the probability
λn [37, 38]. In matrix notation, the preceding decomposition can be rewritten simply as [45]
G = VDU†, with V and U being (different) unitary matrices and D a diagonal matrix contain-
ing the non-negative square roots of the eigenvalues of the non-negative matrix GG† (which are
equal to the eigenvalues of G†G). Likewise V contains in its columns the eigenvectors of GG†

and the columns of U the eigenvectors of G†G [46].
The properties of FC by BS is governed by the forward transformation matrix

[
Grr Grs

Gsr Gss

]

, (9)
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where each of the Green functions has an expansion of the form (6). The fact that QFC is
a unitary process, in the sense that quantum probability is conserved, leads to two important
consequences. First the backward transformation matrix is simply the Hermitian conjugate of
the forward transformation matrix [37], which is not true for parametric amplification. Second,
the Schmidt decompositions of the constituent matrices are related through [12, 38]

[
Grr Grs

Gsr Gss

]

= ∑
n

[
vr,n(t)τnu∗r,n(t

′) vr,n(t)ρnu∗s,n(t
′)

−vs,n(t)ρ∗
n u∗r,n(t

′) vs,n(t)τ∗n u∗s,n(t
′)

]

. (10)

where all four Green functions depend on the output time t and the input time t′. Furthermore
|τ|2n is the transmission (nonconversion) probability and |ρ |2n is the frequency conversion prob-
ability. We have the requirement |ρn|2 + |τn|2 = 1 due to photon number conservation. The
symmetry of this expansion is clear. Conversion from one sideband is described by the same
input modes and, similarly, conversion to a sideband is described by identical output modes.
In the case with only one non-zero Schmidt coefficient we obtain mode-filtering, since a lot
of modes may be sent in, but only one is converted. Similarly for the case of many non-zero
Schmidt coefficients we have mode non-filtering in the sense that the output is the sum of many
inputs [38].

2.1. The frequency and time domains

Some aspects of the FC process are easier to model in the time domain, and others are easier
to model in the frequency domain. Thus this section considers the relations between the two
domains. The following analysis is based on the symmetric Fourier-transform

F {A(t)}= (2π)−1/2
∫ ∞

−∞
A(t)exp(iωt)dt, (11)

F−1{A(ω)}= (2π)−1/2
∫ ∞

−∞
A(ω)exp(−iωt)dω. (12)

The Fourier-transform of functions of two variables is defined in a similar way. Considering the
input-output (IO) equation, Eq. (5), ignoring the self-band interactions, and taking the Fourier-
transform with respect to ω r yields

Ar(ω r) =
∫ ∞

−∞
Grs(ω r; t

′)As(t
′)dt ′. (13)

A product in the time-domain is the inverse Fourier-transform of a convolution in the frequency-
domain, so

Ar(ω r) = (2π)−1
∫∫ ∞

−∞
dt ′dω s

∫ ∞

−∞
dωGrs(ω r;ω s −ω)As(ω)exp(−iω st

′) (14)

We remind the reader of the relation,
∫ ∞
−∞ exp(±iωt)dt = 2π δ (ω), from which the IO relation

in the frequency-domain is obtained

Ar(ω r) =
∫ ∞

−∞
Grs(ω r;−ω s)As(ω s)dω s. (15)

Similarly, the signal Green function in the frequency domain is given as

As(ω s) =

∫ ∞

−∞
Gsr(ω s;−ω r)Ar(ω r)dω r. (16)
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The Fourier transform of the Green function is given as

Grs(ω r;−ω s) = (2π)−1
∫∫ ∞

−∞
Grs(t; t

′)exp(iω rt − iω st
′)dtdt ′, (17)

Grs(t; t
′) = (2π)−1

∫∫ ∞

−∞
Grs(ω r;−ω s)exp(−iω rt + iω st

′)dω rdω s. (18)

Another interesting aspect is the Fourier-transform of the Schmidt-decomposed Green func-
tions. Suppose that the time-domain Green function has the Schmidt-decomposition

Grs(t; t
′) =

∞

∑
n=0

λ 1/2
n vn(t)u

∗
n(t

′), (19)

and when using Eqs. (17) and (19) gives

Grs(ω r;−ω s) =
∞

∑
n=0

λ 1/2
n

∫ ∞

−∞
vn(t)exp(iω rt)(2π)−1/2 dt

×
∫ ∞

−∞

[
un(t

′)exp(iω sts)
]∗
(2π)−1/2 dt ′, (20)

where we have exchanged the order of the sum and the integral which is allowed since the
sum by definition is convergent. This form shows that the Fourier transform of the Schmidt
decomposition of the Green function involves only the Fourier-transform of the individual input
and output modes

Grs(ω r;−ω s) =
∞

∑
n=0

λ 1/2
n vn(ω r)u

∗
n(ω s). (21)

We also note from Parseval’s identity that if the eigenfunctions are normalized in the time-

domain they are also normalized in the frequency-domain [47]. The Schmidt coefficients, λ1/2
n

are naturally identical in the two domains. In the special case where un(t) are real the relation
u∗n(ω) = u(−ω) holds. A similar result exists when going from the frequency-domain to the
time-domain. That is the Fourier transform of the Green function is the sum of products of the
Fourier transform of the Schmidt modes. This is an important result that is used extensively
through the remainder of this paper.

3. Stationary pumps

To gain physical insight we start by solving the FC problem in the low-conversion regime while
assuming that the pumps do not convect relative to one another in the moving frame propagating
at the average group slowness of the sidebands. This is a simplified model of FWM, since
in most cases the pumps walk-off with respect to each other. However it is representative of
TWM, because one pump is always stationary. One may simply choose the frame of reference
to propagate with the pump. First we derive the equations in the frequency-domain, since this
is the standard approach and afterwards we present an alternative derivation.

By Fourier transforming Eqs. (1) and (2) with respect to t and t ′ one find that

∂zAr(ω r,z) = iβr(ω r)Ar(ω r,z)+ i(2π)−1/2
∫ ∞

∞
γpq(ω r −ω s,z)As(ω s)dω s, (22)

∂zAs(ω s,z) = iβs(ω s)As(ω s,z)+ i(2π)−1/2
∫ ∞

∞

∗
γpq(ω s −ω r,z)Ar(ω r)dω r. (23)

Introducing the transformed field Aj(ω j,z) = Bj(ω j,z)exp[iβ j(ω j)z] simplifies the analysis.

Furthermore it is assumed that β j(ω j) = β (1)
j ω j, thus neglecting group velocity dispersion and
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higher-order effects, i.e. β (3)
j ,β (4)

j , . . ., which is reasonable for a sufficiently short piece of fiber
and a narrow pulse in the frequency domain. Throughout the remainder of this paper the simpler

notation β (1)
j = β j is used for the group slowness. These assumptions lead to the approximate

solutions [38]

Br(ω r, l)≈ i(2π)−1/2
∫ l

0

∫ ∞

−∞
γpq(ω r −ω s,z)exp(izω sβs) (24)

× exp(−izω rβr)Bs(ω s,0)dω s dz,

where l is the fiber length. A similar expression exists for the signal field. Using Eqs. (15) and
(16), and inserting Bj = Aj exp[−iβ j(ω j)z], one finds the Green functions

Grs(ω r;−ω s) = i(2π)−1/2
∫ l

0
γpq(ω r −ω s,z)exp

[
iβr(l− z)ω r + iβszω s

]
dz, (25)

Gsr(ω s;−ω r) = i(2π)−1/2
∫ l

0

∗
γpq(ω s −ω r,z)exp

[
iβs(l− z)ω s + iβrzω r

]
dz. (26)

3.1. Standard analysis

The standard way to find the Green function is to consider a specific pump-shape and to carry
out the z-integral in the frequency-domain [48]. A typical pump-shape choice is two identical
Gaussian pumps. It is assumed that the pumps do not convect, thus we write them in the form

Ap(t) = Aq(t) = (πτ2
0 )

−1/4 exp[−t2/(2τ2
0 )], (27)

where τ0 is the root-mean-square width and where the pump-shapes are normalized. The
Fourier transform of γpq(t) is

γpq(ω) = γ(2π)−1/2 exp
(
−σ2ω2/2

)
, (28)

with σ = τ0/
√

2. The factor γ(2π)−1 is denoted γ0 and includes the (2π)−1/2 in front of the
Green function. Inserting this in the Green function and integrating with respect to z leads to

Grs(ω r;−ω s) = iγ0l exp
[
iβrω rl− ilδ0/2−σ2(ω r −ω s)

2/2
]
sinc [lδ0/2] , (29)

with the walk-off parameter defined as δ0 = βrω r −βsω s. The next step is to approximate the
sinc with a Gaussian, sinc(x)≈ exp(−ξx2/2) with ξ ≈ 0.3858. This value is chosen so that the
sinc and the Gaussian have the same full-width-at-half-maximum (FWHM) [48]. All in all our
Green function attains the form

Grs(ω r;−ω s) = iγ0l exp
[
il(βrω r +βsω s)/2−σ2(ω r −ω s)

2/2− (αrω r −αsω s)
2/2

]
, (30)

with α j = ξ 1/2β jl/2. To discuss whether the Green function is separable in its two frequen-
cies the Schmidt decomposition is introduced in Eq. (108) of the Appendix. Since λn is real
by definition we cast the Schmidt decomposition of the Green function under the Gaussian
approximation in the following form:

Grs(ω r;−ω s) = i
∞

∑
n=0

exp(ilβrω r/2+ ilβsω s/2)λ 1/2
n φn(τrω r)φ ∗

n (τsω s), (31)

where φn is the nth orthonormal Hermite polynomial

φn(ax) = a1/2Hn(ax)exp[−(ax)2/2]/[π1/4(n!2n)1/2], (32)
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and where Hn is the Hermite polynomial of order n. The square of the Schmidt coefficient (the
dilation factor) is in the form

λn =
π(γ0l)2

τrτs
(1−μ2)μ2n. (33)

The dimensionless separability parameter is given as

μ =

[(
σ2 +α2

r

)(
σ2 +α2

s

)]1/2 −σαrs

σ2 +αrαs
, (34)

where it is assumed without loss of generality that αrs = αr −αs is positive. The characteristic
timescales are

τr = (σ |αr −αs|)1/2
(

σ2 +α2
r

σ2 +α2
s

)1/4

, (35)

τs = (σ |αr −αs|)1/2
(

σ2 +α2
s

σ2 +α2
r

)1/4

. (36)

Formula (33) for the Schmidt coefficient is simplified by the identity

π(1−μ2)

τrτs
=

2π
[(σ2 +α2

r )(σ2 +α2
s )]

1/2 +σαrs
, (37)

which follows from Eqs. (34)–(36).
For many applications one is interested in separating the Green functions into functions

depending on only one of the frequencies, as frequency entanglement is undesired for some
quantum optical interference experiments [48, 49]. Separability has been studied extensively
for photon-pair generation using three-wave mixing [48, 49], but not for FC. To achieve sep-
arability it is required that μ = 0 and, with the aforementioned assumption that αrs > 0, this
leads to the separability requirement αrαs =−σ2. In the co-propagating case (where the group
slownesses of the sidebands have the same sign) it is not possible to obtain separability since
σ is real, whereas in the counter-propagating case (with different signs of the inverse group
velocities) it is possible to obtain separability for one specific length of the fiber. For μ = 0, this
leads to considerably simpler parameters

λ0 =
πγ2

0 l2

(αrαs)1/2αrs
, (38)

τr = (σ2 +α2
r )

1/2, (39)

τs = (σ2 +α2
s )

1/2, (40)

where λ0 is the only non-zero squared Schmidt coefficient. Notice that this Schmidt coefficient
is indeed independent of the fiber length.

It is instructive to cast Eq. (31) in a slightly different way:

Grs(ω r;−ω s) = i
∞

∑
n=0

λ 1/2
n vn(ω r)u

∗
n(ω s), (41)

with vn(ω r) = φn(τrω r)exp(ilβrω r/2) and un(ω s) = φn(τsω s)exp(−ilβsω s/2). Since ω r and
ω s correspond to the output and input frequencies respectively, we notice that τr and τs are
characteristic time scales.
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The time-domain Green function is found by Fourier transforming Eq. (30), see Appendix A
for the details. The result is

Grs(t; t
′) =

iγ
πσξ 1/2|βrs|

exp

[

− (σ2 +α2
s )t̄

2 −2(σ2 +αrαs)t̄ t̄ ′+(σ2 +α2
r )(t̄

′)2

2(σαrs)2

]

, (42)

where the retarded (or advanced) times are t̄ = t −βrl/2 and t̄ ′ = t ′+βsl/2.
According to the inverse of Eq. (21) the Fourier transform of the Schmidt decomposition is

simply the Fourier transform of the individual Schmidt modes and since F−1{ f (aω)eibω}=
f [(t −b)/a]/|a|, Eq. (41) becomes

Grs(t; t
′) = i

∞

∑
n=0

λ 1/2
n φn

(
t −βrl/2

τr

)

φ ∗
n

(
t ′+βsl/2

τs

)

, (43)

where the Schmidt modes remain normalized and the square of the Schmidt coefficients are
given in Eq. (33). This is the same decomposition we get by using Eqs. (104)–(107) to de-
compose Eq. (42), thus confirming the results in Eqs. (19) and (21). For the case in which
βr =−βs the input and output modes are shifted in phase by the factor lβ jω j/2 corresponding
to an interaction at the middle of the fiber which maximizes the interaction between the four
fields [38].

3.2. Alternative analysis

The standard analysis in the frequency domain is based on two reasonable, but nonetheless re-
stricting assumptions, i.e. similar Gaussian pumps and the approximation of the sinc-function
with a Gaussian. We now present an alternative analysis that enables deriving the Green func-
tions in the time-domain in the general case by interchanging the order of the frequency and
length integrals. Finally we also present a simpler and more physical derivation.

Considering the Fourier transform of Eq. (25) (for brevity we only show a detailed derivation
of Grs), which is

Grs(t; t
′) = i(2π)−3/2

∫ l

0

∫∫ ∞

−∞
γpq(ω r −ω s,z)

× exp
[
− i(t −βrl+βrz)ω r + i(t ′+βsz)ω s

]
dω rdω sdz. (44)

Using the substitution ω ′
r = ω r −ω s and the Fourier transform property F−1{ f (ω)eaiω} =

f (t −a) leads to

Grs(t; t
′) = i(2π)−1/2

∫ l

0

∫ ∞

−∞
γpq(t −βrl+βrz,z)exp

[
iω s(t

′+βsz− t +βrl−βrz)
]
dω sdz. (45)

Carrying out the second frequency integral gives a delta function in z, thus we find

Grs(t; t
′) = i/|βrs|γpq

(
βrt ′ −βs[t −βrl]

βrs
,
t ′ − t +βrl

βrs

)

H(t ′+βrL− t)H(t − t ′ −βsL), (46)

where H is the Heaviside step-function, which ensures causality. This result is valid for arbitrary
pump shapes, and it does not approximate the way the system responds [beyond the perturbation
theory used to derive Eq. (25)]. The argument of γpq is a complicated function of t and t ′, but in
the following section we present a simple physical derivation of it.
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Fig. 3. Characteristic diagrams for (a) idler generation from a pulsed signal and (b) gener-
ation of a signal from a pulsed idler. The gray area shows the area of the high pump power
region. The upward and downward diagonal lines are the characteristics of the idler and the
signal respectively. The output idler (signal) at time t is generated by a collision with the
signal (idler) occurring at the point c.

3.2.1. Time-domain collision analysis

Due to the simplicity of the Green function in the time-domain, Eq. (46), we find the Green
functions directly, in the time domain, by using the method of characteristics [50]. In the low-
conversion regime, the presence of the idler has little effect on the signal. Hence, a signal
impulse that enters the fiber at time t ′ remains an impulse as it convects through the fiber. The
part of the idler that exits the fiber at time t was generated by a collision of the idler pulse with
the signal at the point (tc,zc), where t ′+βszc = t −βr(l − zc). Such a collision is illustrated in
Fig. 3a. The collision distance and time are

zc = [t ′ − (t −βrl)]/βrs, tc = [βrt
′ −βs(t −βrl)]/βrs, (47)

respectively. After the collision, the idler convects with constant amplitude. By integrating
Eq. (1) across the collision region, which is infinitesimally thin, one finds that the cross Green
function is given approximately by

Grs(t; t
′)≈ [iγpq(zc, tc)/|βrs|]H(t ′+βrl− t)H(t − t ′ −βsl). (48)

For signal generation by a pulsed idler, the collision distance and time are

zc = [(t −βsl)− t ′]/βrs, tc = [βr(t −βsl)−βst
′)]/βrs, (49)

respectively, see Fig. 3b. By repeating the collision analysis described above, one obtains the
cross Green function

Gsr(t, t
′)≈ [i

∗
γpq(zc, tc)/|βrs|]H(t ′+βrl− t)H(t − t ′ −βsl). (50)

3.3. Comparing the time-domain and the frequency-domain results

The Green functions were found directly using the collision analysis, cf. Eq. (48). Notice that
the collision time may be evaluated from

βrt
′ −βs(t −βrl) = βr(t

′+βsl/2)−βs(t −βrl/2) = βrt̄
′ −βst̄, (51)
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where t̄ j are the same retarded times as used in Eq. (42). Second, notice that

H(t − t ′ −βsl)H(t ′+βrl− t) = rect[(t − ta)/(βrsl)] = rect[(t̄ − t̄ ′)/(βrsl)], (52)

where the average time is ta = t ′+(βr +βs)l/2 and the rectangle function [51] is

rect(x) =

⎧
⎪⎨

⎪⎩

1, if |x|< 1/2;

1/2, if x =±1/2;

0, otherwise.

(53)

Thus, the Green function in Eq. (48) likewise only depends on the retarded times. The cou-
pling function is defined as γpq(t) = γAp(t)A∗

q(t) where both pump shapes are normalized. To
compare the Green functions in Eqs. (42) and (48) we pick

Ap(t)A
∗
q(t) = exp[−t2/(2σ2)]/(2πσ2)1/2. (54)

In other words the Green function is of the form

G(t; t ′) =
iγ

(2π)1/2σ |βrs|
exp

[

− (βrt̄ ′ −βst̄)2

2(βrsσ)2

]

rect

(
t̄ − t̄ ′

βrsl

)

. (55)

To compare this result with the frequency-domain result that was derived using the sinc approx-
imation, Eq. (42), the rectangular function is approximated with the Gaussian

hexp

[

− (t̄ − t̄ ′)2

2w(βrsl/2)2

]

, (56)

where h and w are fitting parameters that will be determined later. For reference, h= 1 produces
the correct peak height, whereas h= [2/(πw)]1/2 ≈ 1.28 produces the correct area. Aggregating
these results the Green function is approximated by

Grs(t; t
′)≈ iγh

(2π)1/2σ |βrs|
exp

[

− (σ2 +α2
s )t̄

2 −2(σ2 +αrαs)t̄ t̄ ′+(σ2 +α2
r )

2(t̄ ′)2

2(σαrs)2

]

, (57)

where α j = w1/2β jl/2. Comparing Eqs. (42) and (57) they have the same general shape and we
conclude that w = ξ and h = [2/(πw)]1/2 ≈ 1.28, which gives the same integral over the Gaus-
sian and the rectangle function in the time domain. This shows that the effect of approximating
the sinc with a Gaussian in the frequency-domain is equivalent to replacing the sharp bound-
aries from the rectangular function in the frequency-domain with a gradual effective boundary
from the Gaussian. Physically this means that the Green function will allow effects from the
input on the output from input and output times that are not allowed due to causality. Another
issue is that in the limit of long fibers the rectangular function is unity for almost all times, so
one has to pick h = 1 to get the best results.

Since Eq. (57) is of the canonical form for the Schmidt decomposition of a Gaussian, see
Eq. (104) in Appendix A, we notice that the square of the lowest-order Schmidt coefficient and
time scales (μ j is used instead of τ j here not to confuse it with the pump-width) are in the form

λ0 =
(γhl)2w

4[(α2
r +σ2)1/2(α2

s +σ2)1/2 +αrsσ ]
, (58)

μr =
1

(αrsσ)1/2

(
α2

s +σ2

α2
r +σ2

)1/4

=
1
τr
, (59)

μs =
1

(αrsσ)1/2

(
α2

r +σ2

α2
s +σ2

)1/4

=
1
τs
, (60)
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where τ j are the characteristic frequency-scales found in the frequency-domain Schmidt de-
composition.

In the limit of short fibers β l/τ → 0 we find that

λ0 → (γhl)2w/(4σ2) = (γhl)2w/(2τ2), (61)

μ j → 1/(αrsσ)1/2 = 21/4/(αrsτ)1/2. (62)

The square of the Schmidt coefficient scales quadratically with the length and the characteristic
time-scales are the geometric means of αrs and σ , and increase with the square root of the fiber
length. In this limit the separability coefficient (denoted t in the appendix) tends to

μ → 1−αrs/σ , (63)

which is close to unity, in other words this leads to a large number of non-zero Schmidt coef-
ficients. In this limit of short fibers the sidebands experience approximately CW pumps when
the pump-width is much larger than the sideband-width. Notice that the duration of the lowest-
order Schmidt modes are much shorter than the pumps (it is the geometric mean of the transit
time and the pump width). Also for signal-to-idler generation a pulse that is an arbitrary su-
perposition of lower-order modes is converted without significant distortion, since the Schmidt
coefficients decrease slowly as μ is close to unity.

For the other limit where β l/τ → ∞ we find

λ0 → (γh)2/|βrβs|, (64)

μr → (αs/αr)
1/2/(αrsσ)1/2, (65)

μs → (αr/αs)
1/2/(αrsσ)1/2. (66)

The Schmidt coefficient tends to a constant, and the time-scales are now approximately the
geometric mean of αrs and σ , and increase as the square root of the length. This is because
the pumps overlap throughout the entire fiber. As discussed before; in this limit it is more
reasonable to set h = 1 because the step-functions are almost equal to unity. The separability
coefficient tends to

μ → 1−σαrs/|αrαs|, (67)

which is also close to unity. Thus, we would expect many Schmidt modes and therefore a non-
separable Green function.

3.4. Numerical studies

Before we consider numerical studies of the various functions in this paper we discuss the
natural dimensionless parameters to use. The efficiency of conversion is quantified by the di-
mensionless parameter γ̄ = γ/βrs, but this is not a parameter that is going to be varied since
we consider the low-conversion efficiency limit which puts a natural limit on the conversion
strength γ̄ � 1. The natural unit to measure time in is in units of the pump-width and similarly
for the length parameter it is natural to use the pump-width divided by β . For the remainder of
the paper it is assumed that βr = β =−βs in the numerical studies, so βrs = 2β .

To better understand the implications of the step-functions and the Gaussian approximation
several numerical studies were performed, see Fig. 4. In Figs. 4(a) and 4(b) the Green function
is plotted in the time-domain with and without the Gaussian approximation for a short fiber
β l/τ = 1 and for the Gaussian approximation we choose h = 1.28. In this limit the Gaussian
approximation gives a qualitative answer, but it is only moderately accurate. In Figs. 4(c) and
4(d) the two Green functions are plotted with the normalized fiber-length set such that it should
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(a) (b)

(c) (d)

Fig. 4. Numerical studies of the Green function Grs. In all the plots β = 1, γ̄ = 0.1. The two
pumps are normalized Gaussians with a root-mean-square width τ = 1. The white lines
denote the cut-off due to the step-functions, but they only apply to the Green functions
without the Gaussian approximation. For the approximate Green functions the height h =
1.28 was used. (a) The absolute value of the step-function Green function for β l/τ = 1,
i.e. the non-separable case. (b) The Green function with the Gaussian approximation for
β l/τ = 1. (c) The absolute value of Grs for β l/τ = 2.2768, the case where it is expected
to be separable. The shape of the function implies that no separability is attainable. (d) The
Gaussian approximation for the separable fiber-length, and it is indeed seen to be separable.
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(a) (b)

Fig. 5. (a) The Schmidt coefficients for the four plots in Fig. 4. Diamonds and crosses are
for the separable and non-separable fiber length respectively with the Gaussian window
whereas squares and open circles are the Schmidt coefficients with the rectangle window
for the separable and non-separable length respectively. Notice that numerical study for
the separable fiber-length, shows that the Gaussian approximation leads to separability,
whereas the one with step-functions does not. (b) The first two Schmidt modes. The dashed
curves are the Schmidt modes for the Gaussian Green function and the solid ones for the
step-function window. The black curves are the zeroth-order modes and the blue curves the
first-order modes. The normalized length of the fiber is one in this numerical study.

be separable. We remind the reader of the criterion for separability is αrαs =−σ2, thus giving
β l/τ = (2/w)1/2 ≈ 2.2768. By looking at the contour-plots it is clear that the Green function
with the Gaussian approximation is clearly separable whereas the step-function Green func-
tion is not, as it is rotated with respect to the frequency axes. This hypothesis is confirmed in
Fig. 5(a) where the Schmidt coefficients for the four Green functions are plotted. The Schmidt
coefficients are determined by using the analytic form of the Green function for which the
Schmidt decomposition is performed numerically. It gives qualitatively the same Schmidt co-
efficients for the non-separable fiber-length. For the separable fiber-length we have only one
non-zero Schmidt coefficient with the Gaussian approximation, but several non-zero coeffi-
cients for the rectangular window. In Fig. 5(b) the first two Schmidt modes are compared for
the two Green functions for the non-separable fiber-length. Again the qualitative behavior is the
same, but it is only moderately accurate. In conclusion, the time-domain collision analysis does
highlight new physics compared to the standard sinc/Gaussian approximation. The standard
criteria for separability was seen to be an artifact from the approximation of the step-function
with a Gaussian. Indeed for the non-convecting pumps the Green function is never completely
separable for Gaussian pumps since they depend only on t2

c which includes both the input and
the output times. However, the first Schmidt coefficient is 36 times larger than the next one, so
the Green function is approximately separable.

Previously it was discussed that there was a discrepancy in the choice of the height of the
approximating Gaussian in the case of short and long fibers. In Fig. 6(a) the first ten Schmidt
coefficients are plotted for h = 1 and h = 1.28 for the Gaussian windows as well as the step-
index window for a long fiber β l/τ . Notice that none of the Green functions are separable,
as discussed in the previous paragraph. Furthermore, neither of the Gaussian Green functions
accurately represents the Green function with the rectangular window. This is because the Green
function is constant along the t − t ′ contours, such that the Green function always has a finite
value at the cut-off lines. Figure 6(b) shows the two lowest-order Schmidt modes for this long
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(a) (b)

Fig. 6. (a) A plot of the Schmidt coefficients for a long fiber β l/τ = 10. The crosses and
circles are the Schmidt coefficients for the Gaussian window for h = 1 and h = 1.28 re-
spectively. The diamonds are for the rectangular window. (b) The first two Schmidt modes.
The dashed curves are the Schmidt modes for the Gaussian window while the step-function
Schmidt modes are solid. Again the black curves are the zeroth-order modes and the blue
curves the first-order modes. Notice that since the Schmidt modes are normalized they are
identical for both heights in the Gaussian approximation.

fiber. Notice that since the Schmidt modes are normalized they are identical for the two different
heights for the Gaussian window. In this case there is a large discrepancy between the Schmidt
modes of the two different windows, thus reaffirming that replacing the rectangular function
with the Gaussian is not always insignificant.

4. Convecting pumps

The results presented in the previous section gave physical insight into FC by BS. To improve
the accuracy of the model we have to include the walk-off between the pumps since they have
different group slownesses. As seen from Fig. 1, we treat the common case that the pumps
and sidebands are placed pairwise symmetrically around the zero-dispersion frequency, which
means that for closely and moderately spaced pumps and sidebands, pump p co-propagate with
the signal and likewise pump q co-propagates with the idler, because the group-slowness is
symmetrical around the zero-dispersion frequency. This approximation is valid for a wide range
of experimental parameters and throughout the paper we assume that this is the case [34, 38].
Even when this assumption is not completely accurate, Eq. (46) is still valid, so it is easy to
determine the accuracy of this approximation.

With the aforementioned assumption, the pumps are described by

Ap(z, t) = Fp[t −βs(z− zi)], (68)

Aq(z, t) = Fq[t −βr(z− zi)], (69)

where Fj are normalized shape-functions. The pumps intersect at the distance zi in the fiber.
With this pump ansatz, our coupling function γpq in Grs depends on Ap and Aq which are func-
tions of

tcr −βs(zcr − zi) = t ′+βszi, (70)

tcr −βr(zcr − zi) = t −βr(l− zi), (71)
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respectively. Inserting these pumps in Eq. (46) leads to

Grs(t; t
′) = iγ̄A∗

q[t −βr(l− zi)]Ap[t
′+βszi]

×H(t ′+βrl− t)H(t − t ′ −βsl), (72)

where γ̄ = γ/|βrs|. This Green function is naturally separable, and the input and output Schmidt
modes are the shape functions of pumps p and q, respectively. Only the step-functions prevent
complete separability, but for a sufficiently long fiber they are equal to unity for times of interest.

The other Green function was defined in Eq. (50) with the associated collision point defined
in Eq. (49). Using the collision distance and time we find that

tcs −βs(zcs − zi) = t −βs(l− zi), (73)

tcs −βr(zcs − zi) = t ′+βrzi, (74)

and, hence, that

Gsr(t; t
′) = iγ̄A∗

p[t −βs(l− zi)]Aq[t
′+βrzi] (75)

×H(t ′+βrl− t)H(t − t ′ −βsl). (76)

Results (72) and (76) have remarkable consequences. For a sufficiently long fiber we have in
the case of signal-to-idler conversion that the natural input signal mode has the shape of pump
p whereas the output idler mode attains the shape of pump q. The two modes are centered on
βs(l − zi) and βrzi respectively. For idler-to-signal conversion the natural input idler has the
shape of pump q and the output idler attains the shape of pump p. In both cases the input and
output Schmidt modes are timed to arrive at the intersection point of the pumps, since this will
be the point of maximal interaction.

4.1. Gaussian pumps of equal width

Assuming two Gaussian pumps with the same width and zi = l/2, the Green function attains
the form

Grs(t; t
′) =

iγ̄√
πτ

exp

[

− (t −βrl/2)2 +(t ′+βsl/2)2

2τ2

]

×H(t ′+βrl− t)H(t − t ′ −βsl). (77)

The consequences of this result are illustrated in Fig. 7. We notice that this function is clearly
separable for β l/τ = 3 and we confirm that the output mode, the first Schmidt mode for l = 3,
indeed is a copy of pump q centered on βrl/2. It is difficult to conclude anything about the
higher-order Schmidt modes, but a consequence of the Sturm comparison theorem, [52], is that
the eigenfunctions of a Sturm-Liouville problem have a monotonically increasing number of
zeros . Since the Schmidt modes are eigenfunctions of the integral equations [cf. Eqs. (97) and
(98)] we expect them to show the same behavior, which is confirmed by Fig. 7(d).

To check the hypothesis that the optimal interaction distance was half that of the fiber, a
numerical study was performed of the square of the first two Schmidt coefficients λ0 and λ1

as a function of the interaction distance for two different fiber lengths. The result is seen in
Figure 8 which confirms that the strongest frequency conversion is at zi = l/2. An interesting
result is that for the short fiber the first two Schmidt coefficients have maxima at zi = l/2, which
shows that the two lowest-order Schmidt modes have the maximal conversion there. This result
was not replicated for the longer fiber, where the second Schmidt coefficient have minima at
zi = l/2, but this is because the Green function is separable and changing zi moves the Green
function in the (t, t ′) plane leading to a cut-off due to the step-functions.
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(a) (b)

(c) (d)

Fig. 7. Numerical studies of the Green function Grs when including the convecting pumps.
In all the plots βr = 1 = −βs, γ̄ = 0.1. The numerical study uses Gaussian pumps with
a root-mean square width τ = 1. In (a) and (b) white lines denote the cut-off due to the
step-functions. (a) The absolute value of the Heaviside Green function for β l/τ = 1. (b)
The Green function for β l/τ = 3. (c) A plot of the Schmidt coefficients for the two fiber
lengths where the crosses are for the shorter length and the circles for β l/τ . For β l/τ = 3
the function is almost separable which is seen since we only have one dominating Schmidt
mode. (d) The two first output Schmidt modes for the two lengths. The solid curves are for
β l/τ = 1 and the dashed ones for β l/τ = 3. The lowest-order Schmidt mode is plotted in
black and the next one in blue. For β l/τ = 3 the first output mode corresponds to the shape
of pump q centered on βrl/2 like expected. The second output mode has another shape, but
its Schmidt coefficient is almost zero, so this mode is negligible.
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Fig. 8. The square of the first two Schmidt coefficients as a function of the interaction
distance zi. The triangles and circles correspond to λ0 and λ1 respectively for β l/τ = 1.
The dashed line is the square of the lowest-order Schmidt coefficient squared and the solid
line the square of the next Schmidt coefficient for β l/τ = 3.

4.1.1. The Gaussian approximation

To compare the results related to convecting Gaussian pumps with the ones found in the non-
convecting case, once again the step-functions are approximated by a best-fit Gaussian, yielding

Grs(t; t
′)≈ iγ̄h

π1/2τ
exp

[

− (τ2 +α2
rs)t̄

2 −2τ2t̄ t̄ ′+(τ2 +α2
rs)(t̄

′)2

2(ταrs)2

]

, (78)

where t̄ and t̄ ′ are the delayed and advanced output and input times respectively, h is the height
fitting parameter, and ξ = 0.3858 is the constant that gives the same full-width half-maximum
for the approximation of the sinc with a Gaussian. This expression clearly shows that the Green
function is separable in the limit of long fibers since αrs ∝ l and the cross-term is proportional
to 1/α2

rs.
Comparing with Eq. (104) we note that the argument of Eq. (78) is of the same form, hence

inserting from Eq. (78) and using Eq. (109) leads to

λ0 =
(γhl)2w

2[α2
rs + τ2 +αrs(α2

rs +2τ2)1/2]
, (79)

μ j =
[α2

rs(α2
rs +2τ2)]1/4

αrsτ
, (80)

μ =
α2

rs + τ2 −αrs(α2
rs +2τ2)1/2

τ2 , (81)

where again μ j has been used instead of τ j to avoid confusion.
In the limit of short fibers (β l/τ → 0) corresponding to τ � αrs we find

λ0 → (γhl)2w/(2τ2), (82)

μ j → 21/4/(αrsτ)1/2 = 1/(αrsσ)1/2, (83)

μ → 1−αrs2
1/2/τ = 1−αrs/σ . (84)

Notice that these results are the same we found for the non-convecting case, Eqs. (61)–(63),
as expected since the effect of convection is imperceptible for short lengths. The square of
the lowest-order Schmidt coefficient increases quadratically with length, a typical result from
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coherent scattering processes. The time-scale of the Schmidt modes is simply the geometric
mean of αrs and σ , and increases as the square root of the length.

In the complementary limit in which β l/τ → ∞,

λ0 → (γh)2/β 2
rs, μ j → 1/τ, μ → 0. (85)

Thus the squared Schmidt coefficient tends to a constant (which is identical to the one found in
the exact model for h = 1). Also the time-scale is simply the pump-width. Comparing with the
non-convecting case, Eqs. (64)–(67), the lowest-order Schmidt coefficient in both cases tends to
a constant, but the time-scales differ as they now tend to a constant whereas the non-convecting
ones grow with the square root of the fiber-length. Also the separability parameter tends to zero,
such that the Green function is always separable for sufficiently long fibers, which was not the
case for the non-convecting model that was only separable under the Gaussian approximation
and under specific conditions. This contrasts to the non-convecting model because the interac-
tion for the convecting case happens only during the collision, leading to separability and the
drop-out of the length dependence.

These limits were tested numerically for the convecting case, see Fig. 9(a). The figure shows
the square of the lowest-order Schmidt coefficient for the Green functions with the Gaussian-
and step-function windows. It is seen that the Gaussian window over-estimates the value of
the Schmidt coefficient for long fibers, but setting h = 1, such that the Gaussian has the same
height as the rectangular function gives a better agreement. This is reasonable, as the rectangular
window for large fiber-lengths is approximately unity. In the short fiber limit the two models
disagree for h = 1, but one is free to choose w to obtain better accuracy since the long-fiber
limit, Eq. (85) is independent of w. The width of the best-fit Gaussian in the time-domain was
determined by matching the FWHM in the frequency-domain of the Gaussian and the sinc
function. However, the FWHM of the inverse Fourier transform is not necessarily the same. By
choosing the width such that the Gaussian and the rectangle have the same FWHM in the time-
domain, one finds w = 0.7213. The square of the Schmidt coefficients with this width is seen
in Fig. 9(b). Choosing this width results in a better fit in the short fiber limit, than the result of
the traditional sinc approximation. By fitting w to the Schmidt coefficients with the rectangular
window using Eq. (79), we were able to find a slightly better fit for intermediate fiber lengths
for w ≈ 0.86, but at the cost of a worse fit for short fibers. Thus we conclude that the best fit is
found for h = 1 and matching the FWHM in the time-domain.

4.2. Different Gaussian pumps

The next investigation considers Gaussian pumps with different widths. This leads to the Green
function

Grs(t; t
′) =

iγ̄
(πτpτq)1/2

exp

[

− (t −βrl/2)2

2τ2
q

+
(t ′+βsl/2)2

2τ2
p

]

×H(t ′+βrl− t)H(t − t ′ −βsl), (86)

for zi = l/2. This case is investigated in Fig. 10 for τq = τp/2. In (a) and (b) the Green function
is plotted for β l/τp = 1 and 3 respectively. The function is clearly elongated in the t′ direction
because pump p is twice as broad. Fig. 10(c) shows the Schmidt coefficients for the two cases
and for the longer fiber the function is definitely still separable in spite of the different pump
widths. This agrees with the hypothesis since it is only the step-functions that prevent separa-
bility and as long as the ridge is wider than the pump-widths the Schmidt decomposition should
only contain one term. The shorter fiber has a slightly larger lowest-order Schmidt coefficient
compared to Fig. 10(c) resulting in a larger degree of separability because the higher-order
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(a) (b)

Fig. 9. Plots of the square of the lowest-order Schmidt coefficient as a function of the
length of the fiber. (a) For w = ξ = 0.3858, the value giving the same FWHM in the
frequency-domain. The solid line is the square of the analytic lowest-order Schmidt coeffi-
cient, Eq. (79) with h = [2/(wπ)]1/2 ≈ 1.28. The crosses are the numerically found values
for the Gaussian approximated Green function, which agrees with the analytic value. The
open circles are also found numerically, but are for the convecting Green function with
step-function window. Finally the dots is Eq. (79) with h = 1. (b) The same curves as the
left panel but for h = 1 and w = 0.7213 which is the width giving the same FWHM in the
time-domain.

Schmidt coefficients are smaller. This is because the pulse is narrower in one direction and thus
less of the Green function is exposed to the sharp boundaries. In Fig. 10(d) the two lowest out-
put modes for the different fiber lengths are shown. As expected the lowest-order mode for the
separable state is simply a copy of pump q centered on β l/τ = 1/2 [cf. Eq. (72)], whereas the
lowest-order mode for the shorter fiber is distorted, because the step-functions are not negligible
in this case.

The lowest-order Schmidt coefficient was also considered for various aspect ratios, see
Fig. 11(a). As the aspect ratio increases for a constant length the coefficient falls off since
the value of the Green-function at the cut-off points increases, and it is therefore less separable.
However, if the length increases with the aspect ratio it is possible to achieve separability over a
wide range of aspect ratios. This is expected since in this case where pump q is wide compared
to p and thus sideband r is wide and s narrow, for a long enough fiber the two short pulses
propagate past the longer ones and hence experience a full collision [53].

For quantum communication it is of interest to convert the states emitted from a quantum
memory unit to a shape suitable for transmission in an optical communication system. This
might include reshaping the pulse width by a factor of 100 [13]. To check whether such a
reshaping is possible within the perturbative framework, a numerical study with τq = τp/100
was carried out with the Schmidt coefficients in Fig. 11(b). This definitely shows that the Green
function for the longer fiber lengths is separable, but this is a natural extension of the discussion
in Fig. 10(c).

4.2.1. The Gaussian approximation

In a similar way as the analysis for the Green function with two identical Gaussian pumps we
are interested in investigating the effect of the Gaussian approximation. Two different pump-
widths corresponds to replacing τ with (τpτq)

1/2, and τq and τp in front of t̄ and t̄ ′ respectively,
in Eq. (78). For the limit where the aspect ratio tends to infinity or in other words τp → 0 and
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(a) (b)

(c) (d)

Fig. 10. Plots of the Green function Grs with different pump widths in this case τq = τp/2. In
(a) β l/τp = 1 whereas (b) considers β l/τp = 3. The function is elongated in the t ′ direction
since pump p has the largest width. (c) shows the Schmidt coefficients where open circles
are for the longer fiber-length. The long fiber Green function is still separable even though
the pumps have different widths. In (d) the two lowest-order Schmidt modes for the two
lengths is plotted. The black curves are the lowest-order Schmidt mode and the blue ones
the next one. Dashed curves are for the longer fiber.

(a) (b)

Fig. 11. Plot of the lowest-order Schmidt coefficient as a function of the aspect ratio. The
crosses are for β l/τp = 2 and the open circles for the variable length 2τq/τp. (b) The
Schmidt coefficients for a pulse with a very narrow aspect ratio (τq = τp/100) for two
different fiber lengths β l/τp = 0.5 (crosses) and 3 (open circles)

.
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(a) (b)

Fig. 12. Plots of the limits of the square of the lowest-order Schmidt coefficient as a function
of the aspect ratio. (a) This figure shows convecting pumps where β l/τp = 2, w = 0.3858
and the open circles are for the rectangular windows and filled circles and crosses are for
the Gaussian window with h = 1 and h = 1.28 respectively. (b) The same functions as the
left panel but for the the width yielding the same FWHM in the time-domain, w = 0.7213.

τq → ∞ we find that

λ0 → (γh/βrs)
2(αrs/τq), μr → 1/αrs, μs → 1/τp. (87)

Notice that the two time-scales are no longer identical, as expected, and they are determined
by the smaller of either αrs or τ j. The square of the Schmidt coefficient differs from γ̄2 by the
factor αrs/τq.

These results were simulated, see Fig. 12(a). In general, the Gaussian window with h =
1 underestimates the lowest-order Schmidt coefficient, but for large aspect ratios the lower
window height approximates the right result. Also the lowest-order Schmidt coefficients fall off
since the length of the fiber was held constant. In the right panel the square of the lowest-order
Schmidt coefficient is plotted for w = 0.7213. In this case the lower window height does give
a better approximation, but it is only moderately accurate. This is because the Green function
has a large value at the cut-off which makes the Gaussian approximation a less accurate fit.

4.3. HG0/HG1 pumps

Next we consider the case with a Hermite-Gaussian (HG) temporal shape of the pump of zeroth
order (HG0, a Gaussian) for pump p, and a HG pump of first order, HG1, for pump q. The results
are plotted in Fig. 13. Since the HG1 profile is slightly wider a longer fiber was used for the
long-fiber case (β l/τ = 4). Again separability is indeed possible for the long fiber as seen from
the fact that the second coefficient is almost zero in Fig. 13(c). From Eq. (72) it is expected
that the output mode corresponds to that of pump q centered on l/2 for a sufficiently long fiber
where the step-functions are negligible. Since pump q in this case is HG1 it is expected that the
output mode will also be HG1 which is confirmed for β l/τ = 4 in Fig. 13(d) the zeroth-order
output mode is a HG1 centered on l/2. The zeroth-order mode for the shorter fiber is a distorted
HG1 function centered also on l/2.
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(c) (d)

Fig. 13. Numerical study of the Green function Grs with pump p as HG0 and pump q as
HG1. In all the cases γ̄ = 0.1. (a) A plot of the Green function for β l/τ = 1. (b) The Green
function for the long fiber interaction, β l/τ = 4. (c) The first 10 Schmidt coefficients for the
two fiber lengths, where the open circles are for the longer case. The longer one is clearly
separable. (d) The first two output Schmidt modes for each of the numerical studies, again
black is for the lowest-order mode and blue for the next one, while dashed curves are the
ones for the longer fiber. The long fiber first-order Schmidt mode is a HG1 centered on
β l/τ = 2 like expected, whereas the one for the shorter fiber is slightly distorted.

#162929 - $15.00 USD Received 13 Feb 2012; revised 16 Mar 2012; accepted 16 Mar 2012; published 26 Mar 2012
(C) 2012 OSA 9 April 2012 / Vol. 20,  No. 8 / OPTICS EXPRESS  8391



(a) (b)

(c) (d)

Fig. 14. Plots of the Green function Grs where both pumps are HG1 functions and γ̄ = 0.1.
(a) A contour plot of the Green function for the fiber length β l/τ = 1. (b) The contour plot,
for β l/τ = 5. (c) The computed first 10 Schmidt coefficients for the two fiber lengths, open
circles are again for the longer fiber which is clearly separable. (d) A plot of the lowest-
order output Schmidt mode as well as the theoretical HG1 modes. The black curves are for
the shorter fiber and the dashed curves are the numerically found Schmidt modes. The input
modes have not been plotted since they coincided (as expected) with the output modes.

4.4. HG1/HG1 pumps

The final case considered is two identical HG1 pumps. Due to the larger width of the HG1
pumps, we consider β l/τ = 5 to ensure separability. The result is seen in Fig. 14. From
Fig. 14(b) and (c) it is clear that the Green function is separable for a sufficiently long fiber,
which is expected. Considering Eq. (72), we expect the output and input modes for the sep-
arable case simply to be copies of the two pumps. This is indeed confirmed from Fig. 14(d)
where the HG1 pumps coincide with the lowest-order input and output Schmidt mode (only the
output mode has been plotted here since it was indistinguishable from the input mode). Again
the shorter fiber leads to a slightly distorted HG1 mode. With this study we showed that FC is
possible for relatively short fibers and more complicated pump-shapes.

5. Conclusion

In this paper we considered quantum-state preserving frequency conversion in both the
frequency- and the time-domain using a perturbative analysis that is valid for low conversion
efficiencies. The theoretical foundation was discussed and the Green function formalism intro-
duced. The Schmidt decomposition was used as a useful tool to discuss separability and the
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temporal modes comprising the Green functions. The Schmidt modes of the Green function
are the natural input and output modes of the process. Next the Green functions were obtained
in the frequency-domain in the low-conversion limit for stationary pumps that do not convect
with respect to each other. The stationary model is a simplification of four-wave mixing but
it is realistic for three-wave mixing where there is only one pump. The results were obtained
using a standard analysis that assumes Gaussian pumps and the approximation of the system’s
sinc-function response by a best-fit Gaussian. The standard result was inverse Fourier trans-
formed to the time-domain. Using the time-domain collision method, the solution was found
in the time-domain for arbitrary pump-shapes and the effects of the assumptions made in the
standard analysis were discussed. It was shown that for relatively stationary pumps complete
separability is never possible for Gaussian pumps, and the conditions found using the standard
model are artifacts of the sinc/Gaussian approximation. However the Green functions are close
to being separable, and the predictions of the standard theory are reasonable in practice.

The collision method was generalized to also include convecting pumps. The Schmidt de-
composition was used to find the natural modes of the problem and obtain important limits that
allowed us to compare the stationary and the convecting models. In the short-fiber limit the
predictions of the two models agree. It was also shown that convecting pumps allow for sepa-
rable Green functions for sufficiently long fibers. This is in contrast to the stationary result that
is only separable for one specific length. Additionally, we showed that it is possible to obtain
arbitrary reshaping of a signal by a proper selection of the pump pulses. This was confirmed
for simple Gaussian pumps and was also shown to be possible for two Gaussian pumps with
very different widths. Finally higher-order Hermite-Gaussian shapes were also seen to allow
for separability and reshaping. Preliminary numerical results show that reshaping also occurs
in the high-conversion regime.

These results show that frequency conversion by four-wave mixing is a valuable resource for
quantum information systems, as an convenient and reliable source for reshaping and frequency
conversion, both of which are paramount for these systems to be used in practice. The low-
conversion analysis will be extended to the high-conversion regime in future work.

A. Appendix: Mehler identity and kernel decomposition

Decompositions of Gaussian kernels are made possible by the Mehler identity [54, 55]

exp

[

− t2(x2 + y2)

(1− t2)
+

2txy
(1− t2)

]

= (1− t2)1/2
∞

∑
n=0

tn

2nn!
Hn(x)Hn(y), (88)

where the Hermite polynomial

Hn(x) = ex2
(−dx)

ne−x2
(89)

= ex2
∫ ∞

−∞
(2ik)ne−k2−2ikx dk/π1/2. (90)
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It follows from the integral representation (90) that

∞

∑
n=0

tn

2nn!
Hn(x)Hn(y) =

ex2+y2

π

∫∫ ∞

−∞

∞

∑
n=0

(−2tkl)n

n!
e−k2−2ixke−l2−2iyl dkdl

=
ex2+y2

π

∫∫ ∞

−∞
e−k2−2(tl+ix)ke−l2−2iyl dkdl

=
ey2

π1/2

∫ ∞

−∞
e−(1−t2)l2−2i(y−tx)l dl

=
1

(1− t2)1/2
exp

[

− t2(x2 + y2)

1− t2 +
2txy

1− t2

]

, (91)

which proves identity (88). By multiplying this identity by exp[−(x2 + y2)/2], one obtains the
related identity

exp

[

− (1+ t2)(x2 + y2)

2(1− t2)
+

2txy
(1− t2)

]

= [π(1− t2)]1/2
∞

∑
n=0

tnψn(x)ψn(y), (92)

where the (orthonormal) Hermite functions

ψn(x) =
Hn(x)exp(−x2/2)

π1/4(2nn!)1/2
. (93)

The Schmidt decomposition theorem [56, 57] states that a complex kernel K(x,y) may be
written as the series

K(x,y) =
∞

∑
n=0

λ 1/2
n vn(x)u

∗
n(y). (94)

The (non-negative) singular values λn are the (common) eigenvalues of the integral equations

λu(x) = Luu(x), (95)

λv(x) = Lvv(x), (96)

where the hermitian (and non-negative) kernels are

Lu(x,x
′) =

∫ ∞

−∞
K∗(x′′,x)K(x′′,x′)dx′′, (97)

Lv(x,x
′) =

∫ ∞

−∞
K(x,x′′)K∗(x′,x′′)dx′′, (98)

and the associated eigenfunctions u and v satisfy the orthonormality relations
∫ ∞

−∞
um(x)u

∗
n(x)dx = δmn =

∫ ∞

−∞
vm(x)v

∗
n(x)dx. (99)

If K is real and symmetric, u and v are real and Lu = Lv.
Suppose that

K(x,y) = exp

[

− (1+ t2)(x2 + y2)

2(1− t2)
+

2txy
(1− t2)

]

. (100)

Then the (common) hermitian kernel

L(x,y) =

[
π(1− t2)

(1+ t2)

]1/2

exp

[

− (1+ t4)(x2 + y2)

2(1− t4)
+

2t2xy
(1− t4)

]

. (101)
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It follows from Eqs. (92) and (101) that

L(x,y) = π(1− t2)
∞

∑
n=0

t2nψn(x)ψn(y). (102)

Hence, the eigenfunctions that appear in decomposition (94) are the Hermite functions ψn(x),
and the eigenvalues

λn = π(1− t2)t2n. (103)

These results also follow directly from Eqs. (92) and (100).
For asymmetrically-pumped FC,

K(ω r,ω s) = exp[−(aω2
r +2bω rω s + cω2

s)/2], (104)

where a, c and ac−b2 are all non-negative. One can rewrite Eq. (104) in the form of Eq. (100)
by defining

t =−[(ac)1/2 − (ac−b2)1/2]/b, (105)

x = τrω r and y = τsω s, where

τr = [a(ac−b2)/c]1/4, (106)

τs = [c(ac−b2)/a]1/4. (107)

[The choice of root in Eq. (105) is determined by the requirement that t → 0 as b → 0]. The
result is

K(ω r,ω s) =
∞

∑
n=0

λ 1/2
n ψn(τrω r)ψn(τsω s)

=
∞

∑
n=0

(λn/τrτs)
1/2τ1/2

r ψn(τrω r)τ
1/2
s ψn(τsω s), (108)

where the singular values are specified by Eqs. (103) and (105), and the eigenfunctions

τ1/2
j ψn(τ jω j) are normalized. If b is positive, t is negative and vice versa. However, the Her-

mite functions Eq. (93) do not depend on t and the singular values depend only on t2, so Eqs.
(103) and (108) omit sign information as written. One can restore this information by replacing
t with |t| and multiplying τr or τs by sc =−sign(c). This change is equivalent to changing the
sign of x or y in Eq. (100). By combining Eqs. (105)–(107), one can show that

π(1− t2)

τrτs
=

2π
(ac)1/2 +(ac−b2)1/2

, (109)

This term appears in the formula for the Schmidt coefficients associated with normalized eigen-
functions.

For reference, the Fourier transform of a Hermite function is also a Hermite function. This
result is a consequence of the fact that the Hermite functions are eigenstates of the harmonic-
oscillator Hamiltonian, which is symmetric with respect to the position and momentum opera-
tors. One can prove this by multiplying the Hermite generating function [55] by exp(−x2/2),
to obtain the identity

exp(−t2 +2tx− x2/2) =
∞

∑
n=0

tn

n!
Hn(x)exp(−x2/2). (110)
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By Fourier transforming both sides of Eq. (110), according to the conventions

F(k) = (2π)−1/2
∫ ∞

−∞
F(x)exp(−ikx)dx, (111)

F(x) = (2π)1/2
∫ ∞

−∞
F(x)exp(ikx)dx, (112)

one obtains the transformed identity

∞

∑
n=0

tn

n!

∫ ∞

−∞
Hn(x)exp(−x2/2)exp(−ikx)dx/(2π)1/2

= exp[−(−it)2 +2(−it)k− k2/2]

=
∞

∑
n=0

(−it)n

n!
Hn(k)exp(−k2/2). (113)

By equating the coefficients of tn in Eq. (113), one finds that
∫ ∞

−∞
ψn(x)exp(−ikx)dx/(2π)1/2 = (−i)nψn(k), (114)

where ψn was defined in Eq. (93). Hence, if the sideband wavepackets can be expressed as sums
of frequency-domain Hermite functions, they can be expressed as related sums of time-domain
Hermite functions.

The kernel was decomposed in the frequency-domain and the Schmidt modes were Fourier-
transformed to the time-domain. Alternatively one can inverse-transform the kernel directly to
the time-domain and then decompose it. To be able to compare the result in the time-domain
with what we obtained in the frequency domain we consider the generalized Gaussian in the
frequency-domain

F(ω r,−ω s) = exp
[
−(aω2

r +2bω rω s + cω2
s)/2

]
. (115)

By doing the requisite integrals explicitly, one can show that

F(t, t ′) = exp

[

−ct2
r +2btrts +at2

s

2(ac−b2)

]

/(ac−b2)1/2, (116)

which is valid for a and c positive and ac− b2 > 0. Equations (115) and (116) comprise a
specific example of the general transform relation

exp(−X tMX/2)↔ exp(−KtM−1K/2)/[det(M)]1/2, (117)

M is a symmetric matrix, X and K are column vectors, and the superscript t denotes a transpose.
Formula (117) is a standard result. It is proved in Appendix A of [58].

Comparing with Eqs. (105)–(107) the time-domain kernel has an analytic Schmidt decom-
position as it is in the canonical form. It has the same Schmidt-coefficients but the characteristic
time-scales are 1/τr and 1/τs respectively. The time-domain Schmidt-modes are indeed Her-
mite functions, as stated previously.
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