116 research outputs found

    Oral Microcosm Biofilms Grown under Conditions Progressing from Peri-Implant Health, Peri-Implant Mucositis, and Peri-Implantitis

    Get PDF
    Peri-implantitis is a disease influenced by dysbiotic microbial communities that play a role in the short- and long-term outcomes of its clinical treatment. The ecological triggers that establish the progression from peri-implant mucositis to peri-implantitis remain unknown. This investigation describes the development of a novel in vitro microcosm biofilm model. Biofilms were grown over 30 days over machined titanium discs in a constant depth film fermentor (CDFF), which was inoculated (I) with pooled human saliva. Following longitudinal biofilm sampling across peri-implant health (PH), peri-implant mucositis (PM), and peri-implantitis (PI) conditions, the characterisation of the biofilms was performed. The biofilm analyses included imaging by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM), selective and non-selective culture media of viable biofilms, and 16S rRNA gene amplification and sequencing. Bacterial qualitative shifts were observed by CLSM and SEM across conditions, which were defined by characteristic phenotypes. A total of 9 phyla, 83 genera, and 156 species were identified throughout the experiment. The phyla Proteobacteria, Bacteroidetes, Firmicutes, Fusobacteria, and Actinobacteria showed the highest prevalence in PI conditions. This novel in vitro microcosm model provides a high-throughput alternative for growing microcosm biofilms resembling an in vitro progression from PH-PM-PI conditions

    The accumulation of deficits approach to describe frailty

    Get PDF
    The advancing age of the participants of the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study was the incentive to investigate frailty as a major parameter of ageing. The aim of this study was to develop a multidimensional tool to measure frailty in an ageing, free-living study population. The "accumulation of deficits approach" was used to develop a frailty index (FI) to characterize a sub-sample (N = 815) of the EPIC-Potsdam (EPIC-P) study population regarding the aging phenomenon. The EPIC-P frailty index (EPIC-P-FI) included 32 variables from the following domains: health, physical ability, psychosocial and physiological aspects. P-values were calculated for the linear trend between sociodemographic and life style variables and the EPIC-P-FI was calculated using regression analysis adjusted for age. The relationship between the EPIC-P-FI and age was investigated using fractional polynomials. Some characteristics such as age, education, time spent watching TV, cycling and a biomarker of inflammation (C-reactive protein) were associated with frailty in men and women. Interestingly, living alone, having no partner and smoking status were only associated with frailty in men, and alcohol use and physical fitness (VO2max) only in women. The generated, multidimensional FI, adapted to the EPIC-P study, showed that this cohort is a valuable source for further exploration of factors that promote healthy ageing

    Current approaches and future role of high content imaging in safety sciences and drug discovery

    Get PDF
    High content imaging combines automated microscopy with image analysis approaches to simultaneously quantify multiple phenotypic and/or functional parameters in biological systems. The technology has become an important tool in the fields of safety sciences and drug discovery, because it can be used for mode-of-action identification, determination of hazard potency and the discovery of toxicity targets and biomarkers. In contrast to conventional biochemical endpoints, high content imaging provides insight into the spatial distribution and dynamics of responses in biological systems. This allows the identification of signaling pathways underlying cell defense, adaptation, toxicity and death. Therefore high content imaging is considered a promising technology to address the challenges for the Toxicity testing in the 21st century approach. Currently high content imaging technologies are frequently applied in academia for mechanistic toxicity studies and in pharmaceutical industry for the ranking and selection of lead drug compounds or to identify/confirm mechanisms underlying effects observed in vivo. A recent workshop gathered scientists working on high content imaging in academia, pharmaceutical industry and regulatory bodies with the objective to compile the state-of-the-art of the technology in the different institutions. They defined technical and methodological gaps, addressed the need for quality control, suggested control compounds and acceptance criteria, highlighted cell sources and new readouts and discussed future requirements for regulatory implementation. This review summarizes the discussion, proposed solutions and recommendations of the specialists contributing to the workshop.JRC.I.5-Systems Toxicolog

    Transparency and sustainability in global commodity supply chains

    Get PDF
    Over the last few decades rapid advances in processes to collect, monitor, disclose, and disseminate information have contributed towards the development of entirely new modes of sustainability governance for global commodity supply chains. However, there has been very little critical appraisal of the contribution made by different transparency initiatives to sustainability and the ways in which they can (and cannot) influence new governance arrangements. Here we seek to strengthen the theoretical underpinning of research and action on supply chain transparency by addressing four questions: (1) What is meant by supply chain transparency? (2) What is the relevance of supply chain transparency to supply chain sustainability governance? (3) What is the current status of supply chain transparency, and what are the strengths and weaknesses of existing initiatives? and (4) What propositions can be advanced for how transparency can have a positive transformative effect on the governance interventions that seek to strengthen sustainability outcomes? We use examples from agricultural supply chains and the zero-deforestation agenda as a focus of our analysis but draw insights that are relevant to the transparency and sustainability of supply chains in general. We propose a typology to distinguish among types of supply chain information that are needed to support improvements in sustainability governance, and illustrate a number of major shortfalls and systematic biases in existing information systems. We also propose a set of ten propositions that, taken together, serve to expose some of the potential pitfalls and undesirable outcomes that may result from (inevitably) limited or poorly designed transparency systems, whilst offering guidance on some of the ways in which greater transparency can make a more effective, lasting and positive contribution to sustainability

    Towards a TILLING platform for functional genomics in Piel de Sapo melons

    Get PDF
    Background The availability of genetic and genomic resources for melon has increased significantly, but functional genomics resources are still limited for this crop. TILLING is a powerful reverse genetics approach that can be utilized to generate novel mutations in candidate genes. A TILLING resource is available for cantalupensis melons, but not for inodorus melons, the other main commercial group. Results A new ethyl methanesulfonate-mutagenized (EMS) melon population was generated for the first time in an andromonoecious non-climacteric inodorus Piel de Sapo genetic background. Diverse mutant phenotypes in seedlings, vines and fruits were observed, some of which were of possible commercial interest. The population was first screened for mutations in three target genes involved in disease resistance and fruit quality (Cm-PDS, Cm-eIF4E and Cm-eIFI(iso)4E). The same genes were also tilled in the available monoecious and climacteric cantalupensis EMS melon population. The overall mutation density in this first Piel de Sapo TILLING platform was estimated to be 1 mutation/1.5 Mb by screening four additional genes (Cm-ACO1, Cm-NOR, Cm-DET1 and Cm-DHS). Thirty-three point mutations were found for the seven gene targets, six of which were predicted to have an impact on the function of the protein. The genotype/phenotype correlation was demonstrated for a loss-of-function mutation in the Phytoene desaturase gene, which is involved in carotenoid biosynthesis. Conclusions The TILLING approach was successful at providing new mutations in the genetic background of Piel de Sapo in most of the analyzed genes, even in genes for which natural variation is extremely low. This new resource will facilitate reverse genetics studies in non-climacteric melons, contributing materially to future genomic and breeding studies.González, M.; Xu, M.; Esteras Gómez, C.; Roig Montaner, MC.; Monforte Gilabert, AJ.; Troadec, C.; Pujol, M.... (2011). Towards a TILLING platform for functional genomics in Piel de sapo melons. BMC Research Notes. 4(289):289-299. doi:10.1186/1756-0500-4-289S2892994289The International Cucurbit Genomics Initiative (ICuGI). [ http://www.icugi.org ]González-Ibeas D, Blanca J, Roig C, González-To M, Picó B, Truniger V, Gómez P, Deleu W, Caño-Delgado A, Arús P, Nuez F, García-Mas J, Puigdomènech P, Aranda MA: MELOGEN: an EST database for melon functional genomics. BMC Genomics. 2007, 8: 306-10.1186/1471-2164-8-306.Fita A, Picó B, Monforte A, Nuez F: Genetics of Root System Architecture Using Near-isogenic Lines of Melon. J Am Soc Hortic Sci. 2008, 133: 448-458.Fernandez-Silva I, Eduardo I, Blanca J, Esteras C, Picó B, Nuez F, Arús P, Garcia-Mas J, Monforte AJ: Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theor Appl Genet. 2008, 118: 139-150. 10.1007/s00122-008-0883-3.Deleu W, Esteras C, Roig C, González-To M, Fernández-Silva I, Blanca J, Aranda MA, Arús P, Nuez F, Monforte AJ, Picó MB, Garcia-Mas J: A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biol. 2009, 9: 90-10.1186/1471-2229-9-90.Mascarell-Creus A, Cañizares J, Vilarrasa J, Mora-García S, Blanca J, González-Ibeas D, Saladié M, Roig C, Deleu W, Picó B, López-Bigas N, Aranda MA, Garcia-Mas J, Nuez F, Puigdomènech P, Caño-Delgado A: An oligo-based microarray offers novel transcriptomic approaches for the analysis of pathogen resistance and fruit quality traits in melon (Cucumis melo L.). BMC Genomics. 2009, 10: 467-10.1186/1471-2164-10-467.Blanca JM, Cañizares J, Ziarsolo P, Esteras C, Mir G, Nuez F, Garcia-Mas J, Pico B: Melon transcriptome characterization. SSRs and SNPs discovery for high throughput genotyping across the species. Plant Genome. 2011, 4 (2): 118-131. 10.3835/plantgenome2011.01.0003.González VM, Benjak A, Hénaff EM, Mir G, Casacuberta JM, Garcia-Mas J, Puigdomènech P: Sequencing of 6.7 Mb of the melon genome using a BAC pooling strategy. BMC Plant Biology. 2010, 10: 246-10.1186/1471-2229-10-246.Moreno E, Obando JM, Dos-Santos N, Fernández-Trujillo JP, Monforte AJ, Garcia-Mas J: Candidate genes and QTLs for fruit ripening and softening in melon. Theor Appl Genet. 2007, 116: 589-602.Essafi A, Díaz-Pendón JA, Moriones E, Monforte AJ, Garcia-Mas J, Martín-Hernández AM: Dissection of the oligogenic resistance to Cucumber mosaic virus in the melon accession PI 161375. Theor Appl Genet. 2009, 118: 275-284. 10.1007/s00122-008-0897-x.Comai L, Henikoff S: TILLING: practical single-nucleotide mutation discovery. Plant J. 2006, 45: 684-94. 10.1111/j.1365-313X.2006.02670.x.Cooper JL, Till BJ, Laport RG, Darlow MC, Kleffner JM, Jamai A, El-Mellouki T, Liu S, Ritchie R, Nielsen N, et al: TILLING to detect induced mutations in soybean. BMC Plant Biol. 2008, 8 (1): 9-10.1186/1471-2229-8-9.Dalmais M, Schmidt J, Le Signor C, Moussy F, Burstin J, Savois V, Aubert G, de Oliveira Y, Guichard C, Thompson R, Bendahmane A: UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biol. 2008, 9: R43-10.1186/gb-2008-9-2-r43.Dierking EC, Bilyeu KD: New sources of soybean meal and oil composition traits identified through TILLING. BMC Plant Biol. 2009, 9: 89-10.1186/1471-2229-9-89.Perry J, Brachmann A, Welham T, Binder A, Charpentier M, Groth M, Haage K, Markmann K, Wang TL, Parniske M: TILLING in Lotus japonicus identified large allelic series for symbiosis genes and revealed a bias in functionally defective ethyl methanesulfonate alleles toward glycine replacements. Plant Physiol. 2009, 151 (3): 1281-1291. 10.1104/pp.109.142190.Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R: A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J. 2004, 40 (1): 143-150. 10.1111/j.1365-313X.2004.02190.x.Henikoff S, Bradley JT, Comai L: TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol. 2004, 135: 630-636. 10.1104/pp.104.041061.Wu JL, Wu C, Lei C, Baraoidan M, Bordeos A, Madamba MR, Ramos-Pamplona M, Mauleon R, Portugal A, Ulat VJ, et al: Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol Biol. 2005, 59 (1): 85-97. 10.1007/s11103-004-5112-0.Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D: A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol. 2005, 23: 75-81. 10.1038/nbt1043.Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L: Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol. 2007, 7: 19-10.1186/1471-2229-7-19.Xin Z, Wang ML, Barkley NA, Burow G, Franks C, Pederson G, Burke J: Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol. 2008, 8: 103-10.1186/1471-2229-8-103.Dong C, Dalton-Morgan J, Vincent K, Sharp P: A modified TILLING method for wheat breeding. Plant Genome. 2009, 2: 39-47. 10.3835/plantgenome2008.10.0012.Sestili F, Botticella E, Bedo Z, Phillips A, Lafiandra D: Production of novel allelic variation for genes involved in starch biosynthesis through mutagenesis. Mol Breeding. 2010, 25: 145-154. 10.1007/s11032-009-9314-7.Watanabe S, Mizoguchi T, Aoki K, Kubo Y, Mori H, Imanishi S, Yamazaki Y, Shibata D, Ezura H: Ethylmethanesulfonate (EMS) mutagenesis of Solanum lycopersicum cv. Micro-Tom for large-scale mutant screens. Plant Biotech. 2007, 24: 33-38. 10.5511/plantbiotechnology.24.33.Elias R, Till BJ, Mba Ch, Al-Safadi B: Optimizing TILLING and Ecotilling techniques for potato (Solanum tuberosum L). BMC Res Notes. 2009, 2: 141-10.1186/1756-0500-2-141.Piron F, Nicolaı M, Minoıa S, Piednoir E, Moretti A, Salgues A, Zamir D, Caranta C, Bendahmane A: An induced mutation in tomato eIF4E leads to immunity to two Potyviruses. PLoS ONE. 2010, 5 (6): e11313-10.1371/journal.pone.0011313.Himelblau E, Gilchrist EJ, Buono K, Bizell C, Mentzer L, Vogelzang R, Osborn T, Amasino RM, Parkin IAP, Haughn : Forward and reverse genetics of papid cycling Brassica oleracea. Theor Appl Genet. 2009, 118: 953-961. 10.1007/s00122-008-0952-7.Stephenson P, Baker D, Girin T, Perez A, Amoah S, King GJ, Østergaard L: A rich TILLING resource for studying gene function in Brassica rapa. BMC Plant Biol. 2010, 10: 62-10.1186/1471-2229-10-62.Pitrat M: Melon (Cucumis melo L.). Handbook of Crop Breeding Vol I. Vegetables. Edited by: Prohens J, Nuez F. 2008, New York:Springer, 283-315.Dahmani-Mardas F, Troadec Ch, Boualem A, Leveque S, Alsadon AA, Aldoss AA, Dogimont C, Bendahman A: Engineering Melon Plants with Improved Fruit Shelf Life Using the TILLING Approach. PLoS ONE. 2010, 5: e15776-10.1371/journal.pone.0015776.Nieto C, Piron F, Dalmais M, Marco CF, Moriones E, Gómez-Guillamón ML, Truniger V, Gómez P, Garcia-Mas J, Aranda MA, Bendahmane A: EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility. BMC Plant Biol. 2007, 7: 34-10.1186/1471-2229-7-34.Qin G, Gu H, Ma L, Peng Y, Deng XW, Chen Z, Qu LJ: Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Res. 2007, 17: 471-482. 10.1038/cr.2007.40.Codons Optimized to Deliver Deleterious Lesions (CODDLe). [ http://www.proweb.org/input ]Lasserre E, Bouquin T, Hernández JA, Bull J, Pech JC, Balague C: Structure and expression of three genes encoding ACC oxidase homologs from melon (Cucumis melo L.). Mol Gen Genet. 1996, 251 (1): 81-90.Giovannoni JJ: Fruit ripening mutants yield insights into ripening control. Curr Opin Plant Biol. 2007, 10: 1-7. 10.1016/j.pbi.2006.11.012.Davuluri GR, van Tuinen A, Mustilli AC, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Pennings HMJ, Bowler C: Manipulation of DET1 expression in tomato results in photomorphogenic phenotypes caused by post-transcriptional gene silencing. Plant J. 2004, 40: 344-354. 10.1111/j.1365-313X.2004.02218.x.Wei S, Li X, Gruber MI, Li R, Zhou R, Zebarjadi A, Hannoufa A: RNAi-mediated suppression of DET1 alters the levels of carotenoids and sinapate esters in seeds of Brassica napus. J Agric Food Chem. 2009, 57 (12): 5326-5333. 10.1021/jf803983w.Wang TW, Zhang CG, Wu W, Nowack LM, Madey E, Thompson JE: Antisense suppression of deoxyhypusine synthase in tomato delays fruit softening and alters growth and development DHS mediates the first of two sequential enzymatic reactions that activate eukaryotic translation initiation factor-5A. Plant Physiol. 2005, 138: 1372-1382. 10.1104/pp.105.060194.Ng PC, Henikoff S: SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003, 31 (13): 3812-3814. 10.1093/nar/gkg509.Guzman P, Ecker JR: Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. The Plant Cell. 1990, 2: 513-523.Henikoff S, Comai L: Single-nucleotide mutations for plant functional genomics. Ann Rev Plant Biol. 2003, 54: 375-401. 10.1146/annurev.arplant.54.031902.135009.Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynolds SH, Enns LC, Burtner C, Johnson JE, Odden AR, et al: Spectrum of chemically induced mutations from a large-scale reverse genetic screen in Arabidopsis. Genetics. 2003, 164 (2): 731-740.Britt AB: DNA damage and repair in plants. Annu Rev Plant Physiol Plant Mol Biol. 1996, 47: 75-100. 10.1146/annurev.arplant.47.1.75.Truniger V, Nieto C, González-Ibeas D, Aranda M: Mechanism of plant eIF4E-mediated resistance against a Carmovirus (Tombusviridae): cap-independent translation of a viral RNA controlled in cis by an (a)virulence determinant. Plant J. 2008, 56 (5): 716-727. 10.1111/j.1365-313X.2008.03630.x.Gao Z, Johansen E, Eyers S, Thomas CL, Ellis THN, Maule AJ: The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant J. 2004, 40 (3): 376-385. 10.1111/j.1365-313X.2004.02215.x.Kang BC, Yeam I, Frantz JD, Murphy JF, Jahn MM: The pvr1 locus in Capsicum encodes a translation initiation factor eIF4E that interacts with Tobacco etch virus VPg. Plant J. 2005, 42 (3): 392-405. 10.1111/j.1365-313X.2005.02381.x.Ruffel S, Gallois J, Lesage M, Caranta C: The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eiF4 genes. Mol Genet Genom. 2005, 274 (4): 346-353. 10.1007/s00438-005-0003-x.Nicaise V, German-Retana S, Sanjuán R, Dubrana MP, Mazier M, Maisonneuve B, Candresse T, Caranta C, LeGall O: The Eukaryotic Translation Initiation Factor 4E Controls Lettuce Susceptibility to the Potyvirus Lettuce mosaic virus1. Plant Physiol. 2003, 132: 1272-1282. 10.1104/pp.102.017855.Esteras C, Pascual L, Saladie M, Dogimont C, Garcia-Mas J, Nuez F, Picó B: Use of Ecotilling to identify natural allelic variants of melon candidate genes involved in fruit ripening. Proceedings Plant GEM8 Lisbon. 2009Levin I, Frankel P, Gilboa N, Tanny S, Lalazar A: The tomato dark green mutation is a novel allele of the tomato homolog of the DEETIOLATED1 gene. Theor Appl Genet. 2003, 106: 454-460.Kolotilin I, Koltai H, Tadmor Y, Bar-Or C, Reuveni M, Meir A, Nahon S, Shlomo S, Chen L, I Levin: Transcriptional profiling of high pigment-2dg tomato mutant links early fruit plastid biogenesis with its overproduction of phytonutrients. Plant Physiol. 2007, 145: 389-401. 10.1104/pp.107.102962

    Engineering Melon Plants with Improved Fruit Shelf Life Using the TILLING Approach

    Get PDF
    Background: Fruit ripening and softening are key traits that have an effect on food supply, fruit nutritional value and consequently, human health. Since ethylene induces ripening of climacteric fruit, it is one of the main targets to control fruit over ripening that leads to fruit softening and deterioration. The characterization of the ethylene pathway in Arabidopsis and tomato identified key genes that control fruit ripening. [br/] Methodology/Principal Findings: To engineer melon fruit with improved shelf-life, we conducted a translational research experiment. We set up a TILLING platform in a monoecious and climacteric melon line, cloned genes that control ethylene production and screened for induced mutations that lead to fruits with enhanced shelf life. Two missense mutations, L124F and G194D, of the ethylene biosynthetic enzyme, ACC oxidase 1, were identified and the mutant plants were characterized with respect to fruit maturation. The L124F mutation is a conservative mutation occurring away from the enzyme active site and thus was predicted to not affect ethylene production and thus fruit ripening. In contrast, G194D modification occurs in a highly conserved amino acid position predicted, by crystallographic analysis, to affect the enzymatic activity. Phenotypic analysis of the G194D mutant fruit showed complete delayed ripening and yellowing with improved shelf life and, as predicted, the L124F mutation did not have an effect. [br/] Conclusions/Significance: We constructed a mutant collection of 4023 melon M2 families. Based on the TILLING of 11 genes, we calculated the overall mutation rate of one mutation every 573 kb and identified 8 alleles per tilled kilobase. We also identified a TILLING mutant with enhanced fruit shelf life. This work demonstrates the effectiveness of TILLING as a reverse genetics tool to improve crop species. As cucurbits are model species in different areas of plant biology, we anticipate that the developed tool will be widely exploited by the scientific community

    TILLING - a shortcut in functional genomics

    Get PDF
    Recent advances in large-scale genome sequencing projects have opened up new possibilities for the application of conventional mutation techniques in not only forward but also reverse genetics strategies. TILLING (Targeting Induced Local Lesions IN Genomes) was developed a decade ago as an alternative to insertional mutagenesis. It takes advantage of classical mutagenesis, sequence availability and high-throughput screening for nucleotide polymorphisms in a targeted sequence. The main advantage of TILLING as a reverse genetics strategy is that it can be applied to any species, regardless of its genome size and ploidy level. The TILLING protocol provides a high frequency of point mutations distributed randomly in the genome. The great mutagenic potential of chemical agents to generate a high rate of nucleotide substitutions has been proven by the high density of mutations reported for TILLING populations in various plant species. For most of them, the analysis of several genes revealed 1 mutation/200–500 kb screened and much higher densities were observed for polyploid species, such as wheat. High-throughput TILLING permits the rapid and low-cost discovery of new alleles that are induced in plants. Several research centres have established a TILLING public service for various plant species. The recent trends in TILLING procedures rely on the diversification of bioinformatic tools, new methods of mutation detection, including mismatch-specific and sensitive endonucleases, but also various alternatives for LI-COR screening and single nucleotide polymorphism (SNP) discovery using next-generation sequencing technologies. The TILLING strategy has found numerous applications in functional genomics. Additionally, wide applications of this throughput method in basic and applied research have already been implemented through modifications of the original TILLING strategy, such as Ecotilling or Deletion TILLING
    corecore