30 research outputs found

    Weighted sums with two parameters of multiple zeta values and their formulas

    Full text link
    A typical formula of multiple zeta values is the sum formula which expresses a Riemann zeta value as a sum of all multiple zeta values of fixed weight and depth. Recently weighted sum formulas, which are weighted analogues of the sum formula, have been studied by many people. In this paper, we give two formulas of weighted sums with two parameters of multiple zeta values. As applications of the formulas, we find some linear combinations of multiple zeta values which can be expressed as polynomials of usual zeta values with coeffcients in the rational polynomial ring generated by the two parameters, and obtain some identities for weighted sums of multiple zeta values of small depths.Comment: 14 page

    Suppression of Met/HGF Receptor Activation by the Met Juxtamembrane Function and Cell-Cell Contact

    Get PDF
    Division of Tumor Dynamics and Regulatio

    Cell-signalling dynamics in time and space

    Get PDF
    The specificity of cellular responses to receptor stimulation is encoded by the spatial and temporal dynamics of downstream signalling networks. Computational models provide insights into the intricate relationships between stimuli and responses and reveal mechanisms that enable networks to amplify signals, reduce noise and generate discontinuous bistable dynamics or oscillations. These temporal dynamics are coupled to precipitous spatial gradients of signalling activities, which guide pivotal intracellular processes, but also necessitate mechanisms to facilitate signal propagation across a cell

    Tec family kinases in T lymphocyte development and function

    No full text
    The Tec family tyrosine kinases are now recognized as important mediators of antigen receptor signaling in lymphocytes. Three members of this family, Itk, Rlk, and Tec, are expressed in T cells and activated in response to T cell receptor (TCR) engagement. Although initial studies demonstrated a role for these proteins in TCR-mediated activation of phospholipase C-gamma, recent data indicate that Tec family kinases also regulate actin cytoskeletal reorganization and cellular adhesion following TCR stimulation. In addition, Tec family kinases are activated downstream of G protein-coupled chemokine receptors, where they play parallel roles in the regulation of Rho GTPases, cell polarization, adhesion, and migration. In all these systems, however, Tec family kinases are not essential signaling components, but instead function to modulate or amplify signaling pathways. Although they quantitatively reduce proximal signaling, mutations that eliminate Tec family kinases in T cells nonetheless qualitatively alter T cell development and differentiation

    Effect of antiangiogenic therapy on tumor growth, vasculature and kinase activity in basal- and luminal-like breast cancer xenografts

    No full text
    Several clinical trials have investigated the efficacy of bevacizumab in breast cancer, and even if growth inhibiting effects have been registered when antiangiogenic treatment is given in combination with chemotherapy no gain in overall survival has been observed. One reason for the lack of overall survival benefit might be that appropriate criteria for selection of patients likely to respond to antiangiogenic therapy in combination with chemotherapy, are not available. To determine factors of importance for antiangiogenic treatment response and/or resistance, two representative human basal- and luminal-like breast cancer xenografts were treated with bevacizumab and doxorubicin alone or in combination. In vivo growth inhibition, microvessel density (MVD) and proliferating tumor vessels (pMVD ¼ proliferative microvessel density) were analysed, while kinase activity was determined using the PamChip Tyrosine kinase microarray system. Results showed that both doxorubicin and bevacizumab inhibited basal-like tumor growth significantly, but with a superior effect when given in combination. In contrast, doxorubicin inhibited luminal-like tumor growth most effectively, and with no additional benefit of adding antiangiogenic therapy. In agreement with the growth inhibition data, vascular characterization verified a more pronounced effect of the antiangiogenic treatment in the basal-like compared to the luminal-like tumors, demonstrating total inhibition of pMVD and a significant reduction in MVD at early time points (three days after treatment) and sustained inhibitory effects until the end of the experiment (day 18). In contrast, luminal-like tumors only showed significant effect on the vasculature at day 10 in the tumors having received both doxorubicin and bevacizumab. Kinase activity profiling in both tumor models demonstrated that the most effective treatment in vivo was accompanied with increased phosphorylation of kinase substrates of growth control and angiogenesis, like EGFR, VEGFR2 and PLCg1. This may be a result of regulatory feedback mechanisms contributing to treatment resistance, and may suggest response markers of value for the prediction of antiangiogenic treatment efficacy
    corecore