23 research outputs found

    Managing for RADical ecosystem change: applying the Resist-Accept- Direct (RAD) framework

    Get PDF
    Ecosystem transformation involves the emergence of persistent ecological or social–ecological systems that diverge, dramatically and irreversibly, from prior ecosystem structure and function. Such transformations are occurring at increasing rates across the planet in response to changes in climate, land use, and other factors. Consequently, a dynamic view of ecosystem processes that accommodates rapid, irreversible change will be critical for effectively conserving fish, wildlife, and other natural resources, and maintaining ecosystem services. However, managing ecosystems toward states with novel structure and function is an inherently unpredictable and difficult task. Managers navigating ecosystem transformation can benefit from considering broader objectives, beyond a traditional focus on resisting ecosystem change, by also considering whether accepting inevitable change or directing it along some desirable pathway is more feasible (that is, practical and appropriate) under some circumstances (the RAD framework). By explicitly acknowledging transformation and implementing an iterative RAD approach, natural resource managers can be deliberate and strategic in addressing profound ecosystem change

    P3HT-Based Solar Cells: Structural Properties and Photovoltaic Performance

    Full text link
    Each year we are bombarded with B.Sc. and Ph.D. applications from students that want to improve the world. They have learned that their future depends on changing the type of fuel we use and that solar energy is our future. The hope and energy of these young people will transform future energy technologies, but it will not happen quickly. Organic photovoltaic devices are easy to sketch, but the materials, processing steps, and ways of measuring the properties of the materials are very complicated. It is not trivial to make a systematic measurement that will change the way other research groups think or practice. In approaching this chapter, we thought about what a new researcher would need to know about organic photovoltaic devices and materials in order to have a good start in the subject. Then, we simplified that to focus on what a new researcher would need to know about poly-3-hexylthiophene:phenyl-C61-butyric acid methyl ester blends (P3HT: PCBM) to make research progress with these materials. This chapter is by no means authoritative or a compendium of all things on P3HT:PCBM. We have selected to explain how the sample fabrication techniques lead to control of morphology and structural features and how these morphological features have specific optical and electronic consequences for organic photovoltaic device applications

    Open-Circuit Voltage Limitation in Low-Bandgap Diketopyrrolopyrrole-Based Polymer Solar Cells Processed from Different Solvents

    No full text
    Low-bandgap diketopyrrolopyrrole-based polymer bulk-heterojunction solar cells prepared from different solvents are studied by means of capacitance measurements. Large variations of both photovoltage and photocurrent are induced during device processing by using different solvents that allow internal operating energetics to be addressed. Addition of o-dichlorobenzene to chloroform produces an upward offset of the polymer highest occupied molecular orbital level in accordance with the red shift of the absorption spectra, which correlates with the flat-band potential offset extracted from Mott–Schottky analysis of the reverse and low-forward capacitance. However, the open-circuit voltage does not reach the expected value in the case of chloroform-processed devices because of the reduced occupancy of the acceptor fullerene lower unoccupied molecular orbital states extracted from the chemical capacitance analysis under illumination. This photovoltage loss is linked with the limitation to the increase in the electron Fermi level caused by the reduced charge density involved in the photovoltaic process, as derived from the morphology-influenced short-circuit current density

    Role of Zn0 electron-selective layers in regular and inverted bulk heterojunction solar cells

    No full text
    Here the role of metal oxide (ZnO) electron-selective layers in the operating mechanisms of bulk-heterojunction polymer−fullerene solar cells is addressed. Inverted as well as regular structures containing ZnO layers at the cathode contact have been analyzed using capacitance methods in the dark and impedance spectroscopy under illumination. We systematically observed that the open-circuit voltage Voc at 1 sun illumination results higher for inverted cells than that achieved by regular structures in ΔVoc ≈ 30−50 mV. This shift correlates with the displacement of the flat-band potential Vfb extracted from Mott−Schottky capacitance analysis. A coherent picture is provided that states the hole Fermi level of the polymer highest occupied molecular orbital as an energy reference for both Voc and Vfb. The study connects the position of the hole Fermi level to the p-doping character of the active layer that is influenced by the film morphology through vertical phase segregation

    Managing for RADical ecosystem change: applying the Resist‐Accept‐Direct (RAD) framework

    Get PDF
    Ecosystem transformation involves the emergence of persistent ecological or social–ecological systems that diverge, dramatically and irreversibly, from prior ecosystem structure and function. Such transformations are occurring at increasing rates across the planet in response to changes in climate, land use, and other factors. Consequently, a dynamic view of ecosystem processes that accommodates rapid, irreversible change will be critical for effectively conserving fish, wildlife, and other natural resources, and maintaining ecosystem services. However, managing ecosystems toward states with novel structure and function is an inherently unpredictable and difficult task. Managers navigating ecosystem transformation can benefit from considering broader objectives, beyond a traditional focus on resisting ecosystem change, by also considering whether accepting inevitable change or directing it along some desirable pathway is more feasible (that is, practical and appropriate) under some circumstances (the RAD framework). By explicitly acknowledging transformation and implementing an iterative RAD approach, natural resource managers can be deliberate and strategic in addressing profound ecosystem change.The Wildlife SocietyOpen access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore