446 research outputs found

    Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins

    Get PDF
    The plant hormone auxin is central in many aspects of plant development. Previous studies have implicated the ubiquitin-ligase SCFTIR1 and the AUX/IAA proteins in auxin response. Dominant mutations in several AUX/IAA genes confer pleiotropic auxin-related phenotypes, whereas recessive mutations affecting the function of SCFTIR1 decrease auxin response. Here we show that SCFTIR1 is required for AUX/IAA degradation. We demonstrate that SCFTIR1 interacts with AXR2/IAA7 and AXR3/IAA17, and that domain II of these proteins is necessary and sufficient for this interaction. Further, auxin stimulates binding of SCFTIR1 to the AUX/IAA proteins, and their degradation. Because domain II is conserved in nearly all AUX/IAA proteins in Arabidopsis, we propose that auxin promotes the degradation of this large family of transcriptional regulators, leading to diverse downstream effects

    pax1-1 partially suppresses gain-of-function mutations in Arabidopsis AXR3/IAA17

    Get PDF
    Background: The plant hormone auxin exerts many of its effects on growth and development by controlling transcription of downstream genes. The Arabidopsis gene AXR3/IAA17 encodes a member of the Aux/IAA family of auxin responsive transcriptional repressors. Semi-dominant mutations in AXR3 result in an increased amplitude of auxin responses due to hyperstabilisation of the encoded protein. The aim of this study was to identify novel genes involved in auxin signal transduction by screening for second site mutations that modify the axr3-1 gain-of-function phenotype. Results: We present the isolation of the partial suppressor of axr3-1 (pax1-1) mutant, which partially suppresses almost every aspect of the axr3-1 phenotype, and that of the weaker axr3-3 allele. axr3-1 protein turnover does not appear to be altered by pax1-1. However, expression of an AXR3:: GUS reporter is reduced in a pax1-1 background, suggesting that PAX1 positively regulates AXR3 transcription. The pax1-1 mutation also affects the phenotypes conferred by stabilising mutations in other Aux/IAA proteins; however, the interactions are more complex than with axr3-1. Conclusion: We propose that PAX1 influences auxin response via its effects on AXR3 expression and that it regulates other Aux/IAAs secondarily

    Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis

    Get PDF
    Plant root systems can respond to nutrient availability and distribution by changing the three-dimensional deployment of their roots: their root system architecture (RSA). We have compared RSA in homogeneous and heterogeneous nitrate and phosphate supply in Arabidopsis. Changes in nitrate and phosphate availability were found to have contrasting effects on primary root length and lateral root density, but similar effects on lateral root length. Relative to shoot dry weight (DW), primary root length decreased with increasing nitrate availability, while it increased with increasing phosphate supply. Lateral root density remained constant across a range of nitrate supplies, but decreased with increasing phosphate supply. In contrast, lateral root elongation was suppressed both by high nitrate and high phosphate supplies. Local supplies of high nitrate or phosphate in a patch also had different effects. Primary root growth was not affected by a high nitrate patch, but growth through a high phosphate patch reduced primary root growth after the root left the patch. A high nitrate patch induced an increase in lateral root density in the patch, whereas lateral root density was unaffected by a high phosphate patch. However, both phosphate- and nitrate-rich patches induced lateral root elongation in the patch and suppressed it outside the patch. This co-ordinated response of lateral roots also occurs in soil-grown plants exposed to a nutrient-rich patch. The auxin-resistant mutants axr1, axr4 and aux1 all showed the wild-type lateral root elongation responses to a nitrate-rich patch, suggesting that auxin is not required for this response

    Vaginal yeasts in the era of "over the counter" antifungals

    Get PDF
    OBJECTIVE: To establish whether there has been any rise in the prevalence of non-albicans Candida species isolated from vaginal swabs since the introduction of “over the counter” antifungal treatments. METHOD: A retrospective review looking at all positive vaginal yeast isolates collected from women attending one genitourinary medicine clinic during the 6 year period from 1993 to 1998 inclusive. All positive vaginal yeast isolates were included, regardless of whether or not the patients were symptomatic. Isolates from HIV positive women were excluded from the analysis. RESULT: No increase in non-albicans vaginal yeast isolates was shown during the period studied. The proportion of non-albicans yeasts remained constant at approximately 5% of the total yeasts isolated. The most common non-albicans yeast isolated was C glabrata. CONCLUSION: There is no evidence from this study to suggest that the increasing use of “over the counter” antifungal treatment has selected for atypical, possibly inherently azole resistant, strains of vaginal yeasts in HIV seronegative women

    Phosphate availability regulates root system architecture in Arabidopsis

    Get PDF
    Plant root systems are highly plastic in their development and can adapt their architecture in response to the prevailing environmental conditions. One important parameter is the availability of phosphate, which is highly immobile in soil such that the arrangement of roots within the soil will profoundly affect the ability of the plant to acquire this essential nutrient. Consistent with this, the availability of phosphate was found to have a marked effect on the root system architecture of Arabidopsis. Low phosphate availability favored lateral root growth over primary root growth, through increased lateral root density and length, and reduced primary root growth mediated by reduced cell elongation. The ability of the root system to respond to phosphate availability was found to be independent of sucrose supply and auxin signaling. In contrast, shoot phosphate status was found to influence the root system architecture response to phosphate availability

    A Developmental Framework for Graft Formation and Vascular Reconnection in Arabidopsis thaliana

    Get PDF
    Plant grafting is a biologically important phenomenon involving the physical joining of two plants to generate a chimeric organism. It is widely practiced in horticulture and used in science to study the long-distance movement of molecules. Despite its widespread use, the mechanism of graft formation and vascular reconnection is not well understood. Here, we study the dynamics and mechanisms of vascular regeneration in Arabidopsis thaliana during graft formation when the vascular strands are severed and reconnected. We demonstrate a temporal separation between tissue attachment, phloem connection, root growth, and xylem connection. By analyzing cell division patterns and hormone responses at the graft junction, we found that tissues initially show an asymmetry in cell division, cell differentiation, and gene expression and, through contact with the opposing tissue, lose this asymmetry and reform the vascular connection. In addition, we identified genes involved in vascular reconnection at the graft junction and demonstrate that these auxin response genes are required below the graft junction. We propose an inter-tissue communication process that occurs at the graft junction and promotes vascular connection by tissue-specific auxin responses involving ABERRANT LATERAL ROOT FORMATION 4 (ALF4). Our study has implications for phenomena where forming vascular connections are important including graft formation, parasitic plant infection, and wound healing

    “Just because a doctor says something, doesn’t mean that [it] will happen”: Self-perception as having a Fertility Problem among Infertility Patients

    Get PDF
    Only some individuals who have the medically defined condition ‘infertility’ adopt a self-definition as having a fertility problem, which has implications for social and behavioral responses, yet there is no clear consensus on why some people and not others adopt a medical label. We use interview data from 28 women and men who sought medical infertility treatment to understand variations in self-identification. Results highlight the importance of identity disruption for understanding the dialectical relationship between medical contact and self-identification, as well as how diagnosis acts both as a category and a process. Simultaneously integrating new medical knowledge from testing and treatment with previous fertility self-perceptions created difficulty for settling on an infertility self-perception. Four response categories emerged for adopting a self-perception of having a fertility problem: (i) the non-adopters – never adopting the self-perception pre- or post-medical contact; (ii) uncertain – not being fully committed to the self-perception pre- or post-medical contact; (iii) assuming the label – not having prior fertility concerns but adopting the self-perception post-medical contact; and (iv) solidifying a tentative identity – not being fully committed to a self-perception pre-medical contact, but fully committed post-medical contact
    corecore