240 research outputs found

    Ca2+ Extrusion by NCX Is Compromised in Olfactory Sensory Neurons of OMP−/− Mice

    Get PDF
    The role of olfactory marker protein (OMP), a hallmark of mature olfactory sensory neurons (OSNs), has been poorly understood since its discovery. The electrophysiological and behavioral phenotypes of OMP knockout mice indicated that OMP influences olfactory signal transduction. However, the mechanism by which this occurs remained unknown.We used intact olfactory epithelium obtained from WT and OMP(-/-) mice to monitor the Ca(2+) dynamics induced by the activation of cyclic nucleotide-gated channels, voltage-operated Ca(2+) channels, or Ca(2+) stores in single dendritic knobs of OSNs. Our data suggested that OMP could act to modulate the Ca(2+)-homeostasis in these neurons by influencing the activity of the plasma membrane Na(+)/Ca(2+)-exchanger (NCX). Immunohistochemistry verifies colocalization of NCX1 and OMP in the cilia and knobs of OSNs. To test the role of NCX activity, we compared the kinetics of Ca(2+) elevation by stimulating the reverse mode of NCX in both WT and OMP(-/-) mice. The resulting Ca(2+) responses indicate that OMP facilitates NCX activity and allows rapid Ca(2+) extrusion from OSN knobs. To address the mechanism by which OMP influences NCX activity in OSNs we studied protein-peptide interactions in real-time using surface plasmon resonance technology. We demonstrate the direct interaction of the XIP regulatory-peptide of NCX with calmodulin (CaM).Since CaM also binds to the Bex protein, an interacting protein partner of OMP, these observations strongly suggest that OMP can influence CaM efficacy and thus alters NCX activity by a series of protein-protein interactions

    Effect of hydrogen gas and leaching solution on the fast release of fission products from two PWR fuels

    Get PDF
    To study the dissolution of UOX spent nuclear fuel in a deep geological environment and the fast release of a selection of relevant radionuclides for long-term safety of this high level waste, leaching experiments were performed with spent nuclear fuel samples originating from the pressurized water reactors (PWRs) Tihange 1 and Gösgen with a similar burnup (50 – 55 MWd.kgHM−1) but different irradiation histories. Six experiments were conducted to investigate the effect of two critical parameters: (1) the highly alkaline environment caused by the presence of cementitious materials in the “Supercontainer design”, which is currently the reference design for the long-term management of the high-level nuclear waste forms in Belgium, and (2) the reducing conditions imposed by the presence of hydrogen from the corrosion of iron-based materials present in the engineered barriers. The experiments were performed using autoclaves under pressure from 1 to 40 bar with a pure Ar atmosphere or a mixture of H2/Ar. Divided into two consecutive phases, the total experimental duration was about 1400 days. The Phase I provided mainly information about the fast release of the fission products while the perspective of the Phase II was to study the long-term evolution of the spent fuel matrix. During the leaching experiment, concentrations of a selection of radionuclides (238U, 129I, 137Cs, 90Sr and 99Tc) were monitored in solution and the amounts of Kr and Xe were measured in the gas phase. Based on results of the experiments conducted for up to 40 months (i.e. during Phase I of the experimental program), we observe that there is a continuous release of 137Cs, 90Sr and of the fission gases and a clear impact of the irradiation history on the release of certain fission products

    Chemo- and Thermosensory Responsiveness of Grueneberg Ganglion Neurons Relies on Cyclic Guanosine Monophosphate Signaling Elements

    Get PDF
    Neurons of the Grueneberg ganglion (GG) in the anterior nasal region of mouse pups respond to cool temperatures and to a small set of odorants. While the thermosensory reactivity appears to be mediated by elements of a cyclic guanosine monophosphate (cGMP) cascade, the molecular mechanisms underlying the odor-induced responses are unclear. Since odor-responsive GG cells are endowed with elements of a cGMP pathway, specifically the transmembrane guanylyl cyclase subtype GC-G and the cyclic nucleotide-gated ion channel CNGA3, the possibility was explored whether these cGMP signaling elements may also be involved in chemosensory GG responses. Experiments with transgenic mice deficient for GC-G or CNGA3 revealed that GG responsiveness to given odorants was significantly diminished in these knockout animals. These findings suggest that a cGMP cascade may be important for both olfactory and thermosensory signaling in the GG. However, in contrast to the thermosensory reactivity, which did not decline over time, the chemosensory response underwent adaptation upon extended stimulation, suggesting that the two transduction processes only partially overlap. Copyright (C) 2011 S. Karger AG, Base

    Silicon photonics-based laser Doppler vibrometer array for carotid-femoral pulse wave velocity (PWV) measurement

    Get PDF
    Pulse wave velocity (PWV) is a reference measure for aortic stiffness, itself an important biomarker of cardiovascular risk. To enable low-cost and easy-to-use PWV measurement devices that can be used in routine clinical practice, we have designed several handheld PWV sensors using miniaturized laser Doppler vibrometer (LDV) arrays in a silicon photonics platform. The LDV-based PWV sensor design and the signal processing protocol to obtain pulse transit time (PTT) and carotid-femoral PWV in a feasibility study in humans, are described in this paper. Compared with a commercial reference PWV measurement system, measuring arterial pressure waveforms by applanation tonometry, LDV-based displacement signals resulted in more complex signals. However, we have shown that it is possible to identify reliable fiducial points for PTT calculation using the maximum of the 2nd derivative algorithm in LDV-based signals, comparable to those obtained by the reference technique, applanation tonometry. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen

    On the scent of sexual attraction

    Get PDF
    A study in the current issue of BMC Biology has identified a mouse major urinary protein as a pheromone that attracts female mice to male urine marks and induces a learned attraction to the volatile urinary odor of the producer. See research article http://www.biomedcentral.com/1741-7007/8/7

    In vitro test of external Qigong

    Get PDF
    BACKGROUND: Practitioners of the alternative medical practice 'external Qigong' generally claim the ability to emit or direct "healing energy" to treat patients. We investigated the ability of experienced Qigong practitioners to enhance the healthy growth of cultured human cells in a series of studies, each following a rigorously designed protocol with randomization, blinding and controls for variability. METHODS: Qigong practitioners directed healing intentionality toward normal brain cell cultures in a basic science laboratory. Qigong treatments were delivered for 20 minutes from a minimum distance of 10 centimeters. Cell proliferation was measured by a standard colony-forming efficiency (CFE) assay and a CFE ratio (CFE for treated samples/CFE for sham samples) was the dependent measure for each experiment. RESULTS: During a pilot study (8 experiments), a trend of increased cell proliferation in Qigong-treated samples (CFE Qigong/sham ratios > 1.0) was observed (P = 0.162). In a formal study (28 experiments), a similar trend was observed, with Qigong-treated samples showing on average more colony formation than sham samples (P = 0.036). In a replication study (60 experiments), no significant difference between Qigong-treated samples and sham samples was observed (P = 0.465). CONCLUSION: We observed an apparent increase in the proliferation of cultured cells following external Qigong treatment by practitioners under strictly controlled conditions, but we did not observe this effect in a replication study. These results suggest the need for more controlled and thorough investigation of external Qigong before scientific validation is claimed

    Evolutionary Patterns and Selective Pressures of Odorant/Pheromone Receptor Gene Families in Teleost Fishes

    Get PDF
    BACKGROUND: Teleost fishes do not have a vomeronasal organ (VNO), and their vomeronasal receptors (V1Rs, V2Rs) are expressed in the main olfactory epithelium (MOE), as are odorant receptors (ORs) and trace amine-associated receptors (TAARs). In this study, to obtain insights into the functional distinction among the four chemosensory receptor families in teleost fishes, their evolutionary patterns were examined in zebrafish, medaka, stickleback, fugu, and spotted green pufferfish. METHODOLOGY/PRINCIPAL FINDINGS: Phylogenetic analysis revealed that many lineage-specific gene gains and losses occurred in the teleost fish TAARs, whereas only a few gene gains and losses have taken place in the teleost fish vomeronasal receptors. In addition, synonymous and nonsynonymous nucleotide substitution rate ratios (K(A)/K(S)) in TAARs tended to be higher than those in ORs and V2Rs. CONCLUSIONS/SIGNIFICANCE: Frequent gene gains/losses and high K(A)/K(S) in teleost TAARs suggest that receptors in this family are used for detecting some species-specific chemicals such as pheromones. Conversely, conserved repertoires of V1R and V2R families in teleost fishes may imply that receptors in these families perceive common odorants for teleosts, such as amino acids. Teleost ORs showed intermediate evolutionary pattern between TAARs and vomeronasal receptors. Many teleost ORs seem to be used for common odorants, but some ORs may have evolved to recognize lineage-specific odors

    Molecular evolutionary characterization of a V1R subfamily unique to strepsirrhine primates.

    Get PDF
    Vomeronasal receptor genes have frequently been invoked as integral to the establishment and maintenance of species boundaries among mammals due to the elaborate one-to-one correspondence between semiochemical signals and neuronal sensory inputs. Here, we report the most extensive sample of vomeronasal receptor class 1 (V1R) sequences ever generated for a diverse yet phylogenetically coherent group of mammals, the tooth-combed primates (suborder Strepsirrhini). Phylogenetic analysis confirms our intensive sampling from a single V1R subfamily, apparently unique to the strepsirrhine primates. We designate this subfamily as V1Rstrep. The subfamily retains extensive repertoires of gene copies that descend from an ancestral gene duplication that appears to have occurred prior to the diversification of all lemuriform primates excluding the basal genus Daubentonia (the aye-aye). We refer to the descendent clades as V1Rstrep-α and V1Rstrep-β. Comparison of the two clades reveals different amino acid compositions corresponding to the predicted ligand-binding site and thus potentially to altered functional profiles between the two. In agreement with previous studies of the mouse lemur (genus, Microcebus), the majority of V1Rstrep gene copies appear to be intact and under strong positive selection, particularly within transmembrane regions. Finally, despite the surprisingly high number of gene copies identified in this study, it is nonetheless probable that V1R diversity remains underestimated in these nonmodel primates and that complete characterization will be limited until high-coverage assembled genomes are available
    corecore