541 research outputs found

    Do wildflower strips enhance pest control in organic cabbage?

    Get PDF
    Within this project we assess whether wildflower strips and companion plants increase the control of cabbage pests Plutella xylostella L. (Lepidoptera: Plutellidae), Mamestra brassicae L. (Lepidoptera: Noctuidae) and Pieris rapae L. (Lepidoptera: Pieridae) by (1) naturally occurring parasitoids and predators and (2) mass‐releasedn Trichogramma brassciae (Bezdenko) (Hymenoptera: Trichogrammatidae) parasitoids. Two organic cabbage fields were used for this study: adjacent to each field a wildflower strip was sown and companion plants (Centaurea cyanus L. (Asteraceae)) intermixed within the crop. Within each field ~15,000 M. brassicae eggs were placed out to determine the parasitism rates by mass‐released T. brassicae and to assess the levels of egg predation. Over 1,000 lepidopteran larvae were collected and screened for hymenopteran and tachinid parasitoid DNA using a multiplex PCR assay. Invertebrate generalist predators (n=1,063) were collected for DNA‐based gut content analysis. The wildflower strip had a significant positive effect on M. brassicae egg parasitism rates as rates increased 5‐fold in the vicinity to the strip. Moreover, companion plants enhanced invertebrate predation on M. brassicae eggs. Both, the release of T. brassicae and the use of companion plants, however, did not significantly increase egg parasitism rates. The infestation of plants by caterpillars increased with distance to the wildflower strip and there was a trend of decreasing larval parasitism rates with distance to the strip. Currently the invertebrate predators are being molecularly analysed to assess predation on unparasitized and parasitized lepidopteran pests

    Optimized exosome isolation protocol for cell culture supernatant and human plasma.

    Get PDF
    Extracellular vesicles represent a rich source of novel biomarkers in the diagnosis and prognosis of disease. However, there is currently limited information elucidating the most efficient methods for obtaining high yields of pure exosomes, a subset of extracellular vesicles, from cell culture supernatant and complex biological fluids such as plasma. To this end, we comprehensively characterize a variety of exosome isolation protocols for their efficiency, yield and purity of isolated exosomes. Repeated ultracentrifugation steps can reduce the quality of exosome preparations leading to lower exosome yield. We show that concentration of cell culture conditioned media using ultrafiltration devices results in increased vesicle isolation when compared to traditional ultracentrifugation protocols. However, our data on using conditioned media isolated from the Non-Small-Cell Lung Cancer (NSCLC) SK-MES-1 cell line demonstrates that the choice of concentrating device can greatly impact the yield of isolated exosomes. We find that centrifuge-based concentrating methods are more appropriate than pressure-driven concentrating devices and allow the rapid isolation of exosomes from both NSCLC cell culture conditioned media and complex biological fluids. In fact to date, no protocol detailing exosome isolation utilizing current commercial methods from both cells and patient samples has been described. Utilizing tunable resistive pulse sensing and protein analysis, we provide a comparative analysis of 4 exosome isolation techniques, indicating their efficacy and preparation purity. Our results demonstrate that current precipitation protocols for the isolation of exosomes from cell culture conditioned media and plasma provide the least pure preparations of exosomes, whereas size exclusion isolation is comparable to density gradient purification of exosomes. We have identified current shortcomings in common extracellular vesicle isolation methods and provide a potential standardized method that is effective, reproducible and can be utilized for various starting materials. We believe this method will have extensive application in the growing field of extracellular vesicle research

    The multilevel trigger system of the DIRAC experiment

    Get PDF
    The multilevel trigger system of the DIRAC experiment at CERN is presented. It includes a fast first level trigger as well as various trigger processors to select events with a pair of pions having a low relative momentum typical of the physical process under study. One of these processors employs the drift chamber data, another one is based on a neural network algorithm and the others use various hit-map detector correlations. Two versions of the trigger system used at different stages of the experiment are described. The complete system reduces the event rate by a factor of 1000, with efficiency \geq95% of detecting the events in the relative momentum range of interest.Comment: 21 pages, 11 figure

    The Swiss Systemic lupus erythematosus Cohort Study (SSCS) - cross-sectional analysis of clinical characteristics and treatments across different medical disciplines in Switzerland.

    Get PDF
    OBJECTIVES: To describe disease characteristics and treatment modalities in a multidisciplinary cohort of systemic lupus erythematosus (SLE) patients in Switzerland. METHODS: Cross-sectional analysis of 255 patients included in the Swiss SLE Cohort and coming from centres specialised in Clinical Immunology, Internal Medicine, Nephrology and Rheumatology. Clinical data were collected with a standardised form. Disease activity was assessed using the Safety of Estrogens in Lupus Erythematosus National Assessment-SLE Disease Activity Index (SELENA-SLEDAI), an integer physician's global assessment score (PGA) ranging from 0 (inactive) to 3 (very active disease) and the erythrocyte sedimentation rate (ESR). The relationship between SLE treatment and activity was assessed by propensity score methods using a mixed-effect logistic regression with a random effect on the contributing centre. RESULTS: Of the 255 patients, 82% were women and 82% were of European ancestry. The mean age at enrolment was 44.8 years and the median SLE duration was 5.2 years. Patients from Rheumatology had a significantly later disease onset. Renal disease was reported in 44% of patients. PGA showed active disease in 49% of patients, median SLEDAI was 4 and median ESR was 14 millimetre/first hour. Prescription rates of anti-malarial drugs ranged from 3% by nephrologists to 76% by rheumatologists. Patients regularly using anti-malarial drugs had significantly lower SELENA-SLEDAI scores and ESR values. CONCLUSION: In our cohort, patients in Rheumatology had a significantly later SLE onset than those in Nephrology. Anti-malarial drugs were mostly prescribed by rheumatologists and internists and less frequently by nephrologists, and appeared to be associated with less active SLE

    Tests of the Equivalence Principle with Neutral Kaons

    Get PDF
    We test the Principle of Equivalence for particles and antiparticles, using CPLEAR data on tagged K0 and K0bar decays into pi^+ pi^-. For the first time, we search for possible annual, monthly and diurnal modulations of the observables |eta_{+-}| and phi_{+-}, that could be correlated with variations in astrophysical potentials. Within the accuracy of CPLEAR, the measured values of |eta_{+-}| and phi_{+-} are found not to be correlated with changes of the gravitational potential. We analyze data assuming effective scalar, vector and tensor interactions, and we conclude that the Principle of Equivalence between particles and antiparticles holds to a level of 6.5, 4.3 and 1.8 x 10^{-9}, respectively, for scalar, vector and tensor potentials originating from the Sun with a range much greater than the distance Earth-Sun. We also study energy-dependent effects that might arise from vector or tensor interactions. Finally, we compile upper limits on the gravitational coupling difference between K0 and K0bar as a function of the scalar, vector and tensor interaction range.Comment: 15 pages latex 2e, five figures, one style file (cernart.csl) incorporate

    Test of CPT Symmetry and Quantum Mechanics with Experimental data from CPLEAR

    Full text link
    We use fits to recent published CPLEAR data on neutral kaon decays to π+π\pi^+\pi^- and πeν\pi e\nu to constrain the CPT--violation parameters appearing in a formulation of the neutral kaon system as an open quantum-mechanical system. The obtained upper limits of the CPT--violation parameters are approaching the range suggested by certain ideas concerning quantum gravity.Comment: 9 pages of uuencoded postscript (includes 3 figures

    Integrating movement ecology with biodiversity research - exploring new avenues to address spatiotemporal biodiversity dynamics

    Get PDF
    Movement of organisms is one of the key mechanisms shaping biodiversity, e.g. the distribution of genes, individuals and species in space and time. Recent technological and conceptual advances have improved our ability to assess the causes and consequences of individual movement, and led to the emergence of the new field of ‘movement ecology’. Here, we outline how movement ecology can contribute to the broad field of biodiversity research, i.e. the study of processes and patterns of life among and across different scales, from genes to ecosystems, and we propose a conceptual framework linking these hitherto largely separated fields of research. Our framework builds on the concept of movement ecology for individuals, and demonstrates its importance for linking individual organismal movement with biodiversity. First, organismal movements can provide ‘mobile links’ between habitats or ecosystems, thereby connecting resources, genes, and processes among otherwise separate locations. Understanding these mobile links and their impact on biodiversity will be facilitated by movement ecology, because mobile links can be created by different modes of movement (i.e., foraging, dispersal, migration) that relate to different spatiotemporal scales and have differential effects on biodiversity. Second, organismal movements can also mediate coexistence in communities, through ‘equalizing’ and ‘stabilizing’ mechanisms. This novel integrated framework provides a conceptual starting point for a better understanding of biodiversity dynamics in light of individual movement and space-use behavior across spatiotemporal scales. By illustrating this framework with examples, we argue that the integration of movement ecology and biodiversity research will also enhance our ability to conserve diversity at the genetic, species, and ecosystem levels
    corecore