131 research outputs found

    Base metal budgets of a small catchment in a tropical montane forest in South Ecuador

    Get PDF
    In a tropical montane rain forest in south Ecuador, the alkali and earth alkali metals Ca, Mg, K, and Na are supplied by weathering of the parent substrate consisting of phyllites and metasandstones and by atmospheric inputs. Phases of acid deposition are interrupted by alkalinization through episodic basic dust deposition. Although the biological productivity of most terrestrial ecosystems is thought to be N- and/or P-limited, there is increasing evidence that the essential plant nutrients K, Na, Mg and Ca can also limit biological functioning. We quantified biological and geochemical contributions to base metal fluxes and set up a metal budget of a ca. 9.1-ha large catchment from 1998 to 2013. The catchment is characterized by a high annual interception loss (28–50 %) and a low contribution of stem flow to throughfall. Mean total annual soil input (throughfall + stemflow + litterfall) was 13800 ± 1500 mg m-2 (Ca, mean ± SD), 19000 ± 1510 (K), 4690 ± 619 (Mg) and 846 ± 592 (Na) of which 22 ± 6 % (Ca), 45 ± 16 (K), 39 ± 10 (Mg) and 84 ± 33 (Na) were leached to soil horizons below the organic layer. The three nutrient metals Ca, K and Mg were thus to a large part retained in the biotic part of the catchment. The canopy budget of K was consistently and most pronouncedly negative. The canopy budgets of Ca and Mg were closely correlated and in most years negative, while the budget of Na was consistently positive, indicating net retention of this element in the canopy. The mineral soil retained 79–94 % of Ca, K and Mg, while Na was net released from the mineral soil. The size of mainly biologically controlled aboveground fluxes of Ca, K and Mg was 1-2 orders of magnitude larger than that of mainly geochemically controlled fluxes which are driven by sorption to soil and weathering. Annual net hydrological fluxes (bulk deposition – stream flow) were –66 ± 278 mg m-2 (Ca), 361 ± 421 (K), –188 ± 159 (Mg) and –1700 ± 587 (Na). If estimated dry deposition was included, the system accumulated 86 kg Ca ha-1 and 199 kg K ha-1, had a nearly balanced budget of Mg (+0.3 kg ha-1) and lost 56 kg of Na ha-1 in the last 15 years. The strongest driver of all budgets was the input flux into the various compartments

    Polycyclic aromatic hydrocarbons (PAHs) in soils of an industrial area in semi-arid Uzbekistan: spatial distribution, relationship with trace metals and risk assessment

    Get PDF
    The concentrations, composition patterns, transport and fate of PAHs in semi-arid and arid soils such as in Central Asia are not well known. Such knowledge is required to manage the risk posed by these toxic chemicals to humans and ecosystems in these regions. To fill this knowledge gap, we determined the concentrations of 21 parent PAHs, 4,5-methylenephenanthrene, 6 alkylated PAHs, and biphenyl in soils from 11 sampling locations (0–10, 10–20 cm soil depths) along a 20-km transect downwind from the Almalyk metal mining and metallurgical industrial complex (Almalyk MMC), Uzbekistan. The concentrations of Σ29 PAHs and Σ16 US-EPA PAHs were 41–2670 ng g1^{-1} and 29–1940 ng g1^{-1}, respectively. The highest concentration of Σ29 PAHs occurred in the immediate vicinity of the copper smelting factory of the Almalyk MMC. The concentrations in topsoil decreased substantially to a value of ≤ 200 ng g1^{-1} (considered as background concentration) at ≥ 2 km away from the factory. Low molecular weight PAHs dominated the PAH mixtures at less contaminated sites and high molecular weight PAHs at the most contaminated site. The concentration of Σ16 US-EPA PAHs did not exceed the precautionary values set by the soil quality guidelines of, e.g., Switzerland and Germany. Similarly, the benzo[a]pyrene equivalent concentration in soils near the Almalyk MMC did not exceed the value set by the Canadian guidelines for the protection of humans from carcinogenic PAHs in soils. Consequently, the cancer risk due to exposure to PAHs in these soils can be considered as low

    Does plant diversity affect the water balance of established grassland systems like in manipulative biodiversity experiments?

    Get PDF
    Land-use intensification and biodiversity loss are known drivers of the water cycle but their interactions are unclear. We investigated how evapotranspiration (ETa), downward water flux (DF), and capillary rise (CR) in topsoil and subsoil are related to land-use and plant diversity in established, commercially managed grassland and compared these results to findings from an experiment in which plant diversity was manipulated. In three Central European regions (“Biodiversity Exploratories”), we studied 29 grassland plots (50 m x 50 m; 9-11 plots per region). Land-use intensity increases in the order, pasture < mown pasture < meadow. In 2010-2015, we measured soil moisture, meteorological conditions, plant species richness, number of species in the functional groups of grasses, herbs, and legumes, and root biomass. ETa, DF, and CR were calculated for two soil layers with a soil water balance model. Land-use and biodiversity effects on water fluxes were analyzed with repeated-measures analysis of variance. Land-use intensity did not affect water fluxes. Species richness did not influence DF and CR. ETa from topsoil decreased with increasing species richness while ETa from subsoil increased. Opposing effects on ETa in the two soil layers were also observed for the number of herbs and legumes. In manipulative biodiversity experiments, such opposing effects were explained by higher biomass in species-rich mixtures, which increases shading of topsoil and reduces evaporation. In subsoil, deeper roots in species-rich mixtures increased transpiration. In the commercially managed grasslands, biomass and species richness correlated negatively because fertilizer application increased biomass and decreased species richness. Thus, similar effects of biodiversity on water fluxes in commercially managed and experimentally manipulated grassland had different reasons. We speculate that improved infiltration and enhanced bioturbation in species-rich grassland explained our observations

    Climate change and infectious disease: A prologue on multidisciplinary cooperation and predictive analytics

    Get PDF
    Climate change impacts global ecosystems at the interface of infectious disease agents and hosts and vectors for animals, humans, and plants. The climate is changing, and the impacts are complex, with multifaceted effects. In addition to connecting climate change and infectious diseases, we aim to draw attention to the challenges of working across multiple disciplines. Doing this requires concentrated efforts in a variety of areas to advance the technological state of the art and at the same time implement ideas and explain to the everyday citizen what is happening. The world's experience with COVID-19 has revealed many gaps in our past approaches to anticipating emerging infectious diseases. Most approaches to predicting outbreaks and identifying emerging microbes of major consequence have been with those causing high morbidity and mortality in humans and animals. These lagging indicators offer limited ability to prevent disease spillover and amplifications in new hosts. Leading indicators and novel approaches are more valuable and now feasible, with multidisciplinary approaches also within our grasp to provide links to disease predictions through holistic monitoring of micro and macro ecological changes. In this commentary, we describe niches for climate change and infectious diseases as well as overarching themes for the important role of collaborative team science, predictive analytics, and biosecurity. With a multidisciplinary cooperative “all call,” we can enhance our ability to engage and resolve current and emerging problems

    Land‐use intensity and biodiversity effects on infiltration capacity and hydraulic conductivity of grassland soils in southern Germany

    Get PDF
    Evidence from experimental and established grasslands indicates that plant biodiversity can modify the water cycle. One suspected mechanism behind this is a higher infiltration capacity (νB_{B}) and hydraulic conductivity (K) of the soil on species-rich grasslands. However, in established and agriculturally managed grasslands, biodiversity effects cannot be studied independent of land-use effects. Therefore, we investigated in established grassland systems how land-use intensity and associated biodiversity of plants and soil animals affect νB and K at and close to saturation. On 50 grassland plots along a land-use intensity gradient in the Biodiversity Exploratory Schwäbische Alb, Germany, we measured νB with a hood infiltrometer at several matrix potentials and calculated the saturated and unsaturated K. We statistically analysed the relationship between νB_{B} or K and land-use information (e.g., fertilising intensity), abiotic (e.g., soil texture) and biotic data (e.g., plant species richness, earthworm abundance). Land-use intensity decreased and plant species richness increased νB_{B} and K, while the direction of the effects of soil animals was inconsistent. The effect of land-use intensity on νB_{B} and K was mainly attributable to its negative effect on plant species richness. Our results demonstrate that plant species richness was a better predictor of νB_{B} and K at and close to saturation than land-use intensity or soil physical properties in the established grassland systems of the Schwäbische Alb

    Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: Patterns, mechanisms, and open questions

    Get PDF
    In the past two decades, a large number of studies have investigated the relationship between biodiversity and ecosystem functioning, most of which focussed on a limited set of ecosystem variables. The Jena Experiment was set up in 2002 to investigate the effects of plant diversity on element cycling and trophic interactions, using a multi-disciplinary approach. Here, we review the results of 15 years of research in the Jena Experiment, focussing on the effects of manipulating plant species richness and plant functional richness. With more than 85,000 measures taken from the plant diversity plots, the Jena Experiment has allowed answering fundamental questions important for functional biodiversity research. First, the question was how general the effect of plant species richness is, regarding the many different processes that take place in an ecosystem. About 45% of different types of ecosystem processes measured in the ‘main experiment’, where plant species richness ranged from 1 to 60 species, were significantly affected by plant species richness, providing strong support for the view that biodiversity is a significant driver of ecosystem functioning. Many measures were not saturating at the 60-species level, but increased linearly with the logarithm of species richness. There was, however, great variability in the strength of response among different processes. One striking pattern was that many processes, in particular belowground processes, took several years to respond to the manipulation of plant species richness, showing that biodiversity experiments have to be long-term, to distinguish trends from transitory patterns. In addition, the results from the Jena Experiment provide further evidence that diversity begets stability, for example stability against invasion of plant species, but unexpectedly some results also suggested the opposite, e.g. when plant communities experience severe perturbations or elevated resource availability. This highlights the need to revisit diversity–stability theory. Second, we explored whether individual plant species or individual plant functional groups, or biodiversity itself is more important for ecosystem functioning, in particular biomass production. We found strong effects of individual species and plant functional groups on biomass production, yet these effects mostly occurred in addition to, but not instead of, effects of plant species richness. Third, the Jena Experiment assessed the effect of diversity on multitrophic interactions. The diversity of most organisms responded positively to increases in plant species richness, and the effect was stronger for above- than for belowground organisms, and stronger for herbivores than for carnivores or detritivores. Thus, diversity begets diversity. In addition, the effect on organismic diversity was stronger than the effect on species abundances. Fourth, the Jena Experiment aimed to assess the effect of diversity on N, P and C cycling and the water balance of the plots, separating between element input into the ecosystem, element turnover, element stocks, and output from the ecosystem. While inputs were generally less affected by plant species richness, measures of element stocks, turnover and output were often positively affected by plant diversity, e.g. carbon storage strongly increased with increasing plant species richness. Variables of the N cycle responded less strongly to plant species richness than variables of the C cycle. Fifth, plant traits are often used to unravel mechanisms underlying the biodiversity–ecosystem functioning relationship. In the Jena Experiment, most investigated plant traits, both above- and belowground, were plastic and trait expression depended on plant diversity in a complex way, suggesting limitation to using database traits for linking plant traits to particular functions. Sixth, plant diversity effects on ecosystem processes are often caused by plant diversity effects on species interactions. Analyses in the Jena Experiment including structural equation modelling suggest complex interactions that changed with diversity, e.g. soil carbon storage and greenhouse gas emission were affected by changes in the composition and activity of the belowground microbial community. Manipulation experiments, in which particular organisms, e.g. belowground invertebrates, were excluded from plots in split-plot experiments, supported the important role of the biotic component for element and water fluxes. Seventh, the Jena Experiment aimed to put the results into the context of agricultural practices in managed grasslands. The effect of increasing plant species richness from 1 to 16 species on plant biomass was, in absolute terms, as strong as the effect of a more intensive grassland management, using fertiliser and increasing mowing frequency. Potential bioenergy production from high-diversity plots was similar to that of conventionally used energy crops. These results suggest that diverse ‘High Nature Value Grasslands’ are multifunctional and can deliver a range of ecosystem services including production-related services. A final task was to assess the importance of potential artefacts in biodiversity–ecosystem functioning relationships, caused by the weeding of the plant community to maintain plant species composition. While the effort (in hours) needed to weed a plot was often negatively related to plant species richness, species richness still affected the majority of ecosystem variables. Weeding also did not negatively affect monoculture performance; rather, monocultures deteriorated over time for a number of biological reasons, as shown in plant-soil feedback experiments. To summarize, the Jena Experiment has allowed for a comprehensive analysis of the functional role of biodiversity in an ecosystem. A main challenge for future biodiversity research is to increase our mechanistic understanding of why the magnitude of biodiversity effects differs among processes and contexts. It is likely that there will be no simple answer. For example, among the multitude of mechanisms suggested to underlie the positive plant species richness effect on biomass, some have received limited support in the Jena Experiment, such as vertical root niche partitioning. However, others could not be rejected in targeted analyses. Thus, from the current results in the Jena Experiment, it seems likely that the positive biodiversity effect results from several mechanisms acting simultaneously in more diverse communities, such as reduced pathogen attack, the presence of more plant growth promoting organisms, less seed limitation, and increased trait differences leading to complementarity in resource uptake. Distinguishing between different mechanisms requires careful testing of competing hypotheses. Biodiversity research has matured such that predictive approaches testing particular mechanisms are now possible

    Simple model systems: a challenge for Alzheimer's disease

    Get PDF
    The success of biomedical researches has led to improvement in human health and increased life expectancy. An unexpected consequence has been an increase of age-related diseases and, in particular, neurodegenerative diseases. These disorders are generally late onset and exhibit complex pathologies including memory loss, cognitive defects, movement disorders and death. Here, it is described as the use of simple animal models such as worms, fishes, flies, Ascidians and sea urchins, have facilitated the understanding of several biochemical mechanisms underlying Alzheimer's disease (AD), one of the most diffuse neurodegenerative pathologies. The discovery of specific genes and proteins associated with AD, and the development of new technologies for the production of transgenic animals, has helped researchers to overcome the lack of natural models. Moreover, simple model systems of AD have been utilized to obtain key information for evaluating potential therapeutic interventions and for testing efficacy of putative neuroprotective compounds
    corecore