57 research outputs found

    The Universe out of an Elementary Particle?

    Get PDF
    We consider a model of an elementary particle as a 2 + 1 dimensional brane evolving in a 3 + 1 dimensional space. Introducing gauge fields that live in the brane as well as normal surface tension can lead to a stable "elementary particle" configuration. Considering the possibility of non vanishing vacuum energy inside the bubble leads, when gravitational effects are considered, to the possibility of a quantum decay of such "elementary particle" into an infinite universe. Some remarkable features of the quantum mechanics of this process are discussed, in particular the relation between possible boundary conditions and the question of instability towards Universe formation is analyzed

    Inflammation and Disintegration of Intestinal Villi in an Experimental Model for Vibrio parahaemolyticus-Induced Diarrhea

    Get PDF
    Vibrio parahaemolyticus is a leading cause of seafood-borne gastroenteritis in many parts of the world, but there is limited knowledge of the pathogenesis of V. parahaemolyticus-induced diarrhea. The absence of an oral infection-based small animal model to study V. parahaemolyticus intestinal colonization and disease has constrained analyses of the course of infection and the factors that mediate it. Here, we demonstrate that infant rabbits oro-gastrically inoculated with V. parahaemolyticus develop severe diarrhea and enteritis, the main clinical and pathologic manifestations of disease in infected individuals. The pathogen principally colonizes the distal small intestine, and this colonization is dependent upon type III secretion system 2. The distal small intestine is also the major site of V. parahaemolyticus-induced tissue damage, reduced epithelial barrier function, and inflammation, suggesting that disease in this region of the gastrointestinal tract accounts for most of the diarrhea that accompanies V. parahaemolyticus infection. Infection appears to proceed through a characteristic sequence of steps that includes remarkable elongation of microvilli and the formation of V. parahaemolyticus-filled cavities within the epithelial surface, and culminates in villus disruption. Both depletion of epithelial cell cytoplasm and epithelial cell extrusion contribute to formation of the cavities in the epithelial surface. V. parahaemolyticus also induces proliferation of epithelial cells and recruitment of inflammatory cells, both of which occur before wide-spread damage to the epithelium is evident. Collectively, our findings suggest that V. parahaemolyticus damages the host intestine and elicits disease via previously undescribed processes and mechanisms

    On the water-bag model of dispersionless KP hierarchy

    Get PDF
    We investigate the bi-Hamiltonian structure of the waterbag model of dKP for two component case. One can establish the third-order and first-order Hamiltonian operator associated with the waterbag model. Also, the dispersive corrections are discussed.Comment: 19 page

    The r-process nucleosynthesis: a continued challenge for nuclear physics and astrophysics

    Full text link
    The identification of the astrophysical site and the specific conditions in which r-process nucleosynthesis takes place remain unsolved mysteries of astrophysics. The present paper emphasizes some important future challenges faced by nuclear physics in this problem, particularly in the determination of the radiative neutron capture rates by exotic nuclei close to the neutron drip line and the fission probabilities of heavy neutron-rich nuclei. These quantities are particularly relevant to determine the composition of the matter resulting from the decompression of initially cold neutron star matter. New detailed r-process calculations are performed and the final composition of ejected inner and outer neutron star crust material is estimated. We discuss the impact of the many uncertainties in the astrophysics and nuclear physics on the final composition of the ejected matter. The similarity between the predicted and the solar abundance pattern for A > 140 nuclei as well as the robustness of the prediction with varied input parameters makes this scenario one of the most promising that deserves further exploration.Comment: 8 pages, contribution to the Nuclei in the Cosmos Conference, to appear in Nucl. Phys.

    Actinides: How well do we know their stellar production?

    Get PDF
    The reliable evaluation of the r-process production of the actinides and careful estimates of the uncertainties affecting these predictions are key ingredients especially in nucleo-cosmochronology studies based on the analysis of very metal-poor stars or on the composition of meteorites. This type of information is also required in order to make the best possible use of future high precision data on the actinide composition of galactic cosmic rays, of the local interstellar medium, or of meteoritic grains of presumed circumstellar origin. This paper provides the practitioners in these various fields with the most detailed and careful analysis of the r-process actinide production available to-date. In total, thirty-two different multi-event canonical calculations using different nuclear ingredients or astrophysics conditions are presented, and are considered to give a fair picture of the level of reliability of the predictions of the actinide production, at least in the framework of a simple r-process model. This simplicity is imposed by our inability to identify the proper astrophysical sites for the r-process. Constraints on the actinide yield predictions and associated uncertainties are suggested on grounds of the measured abundances of r-nuclides, including Th and U, in the star CS 31082-001, and under the critical and questionable assumption of the `universality' of the r-process. We also define alternative constraints based on the nucleo-cosmochronological results derived from the present actinide content of meteorites. Implications to the different above-cited fields, and in particular nucleo-cosmochronometry are discussed.Comment: 10 pages, 2 figures; A&A in pres

    Biosynthesis and Molecular Genetics of Polyketides in Marine Dinoflagellates

    Get PDF
    Marine dinoflagellates are the single most important group of algae that produce toxins, which have a global impact on human activities. The toxins are chemically diverse, and include macrolides, cyclic polyethers, spirolides and purine alkaloids. Whereas there is a multitude of studies describing the pharmacology of these toxins, there is limited or no knowledge regarding the biochemistry and molecular genetics involved in their biosynthesis. Recently, however, exciting advances have been made. Expressed sequence tag sequencing studies have revealed important insights into the transcriptomes of dinoflagellates, whereas other studies have implicated polyketide synthase genes in the biosynthesis of cyclic polyether toxins, and the molecular genetic basis for the biosynthesis of paralytic shellfish toxins has been elucidated in cyanobacteria. This review summarises the recent progress that has been made regarding the unusual genomes of dinoflagellates, the biosynthesis and molecular genetics of dinoflagellate toxins. In addition, the evolution of these metabolic pathways will be discussed, and an outlook for future research and possible applications is provided

    Evidence for induction of DNA double strand breaks in the bystander response to targeted soft X-rays in CHO cells.

    No full text
    This study investigated the role of DNA double strand breaks and DNA base damage in radiation-induced bystander responses in Chinese hamster ovary (CHO) cell lines. Two CHO repair-deficient clones, xrs5 (DNA double strand break repair-deficient) and EM9 (DNA base excision repair-deficient) were used in addition to the wild type (CHO). The Gray Cancer Institute ultrasoft X-ray microprobe is a powerful tool for investigating the bystander response, because it permits the irradiation of only a single nucleus of a cell, as reported previously. In order to investigate the bystander effect in each repair-deficient cell line, we irradiated a single cell within a population and scored the formation of micronuclei. When a single nucleus in the population was targeted with 1 Gy, elevated numbers of micronuclei were induced in the neighbouring unirradiated cells in the EM9 and xrs5 cell lines, whereas induction was not observed in CHO. The induction of micronuclei in xrs5 was significantly higher than that in EM9. Under these conditions, the surviving fraction in the neighbouring cells was significantly lower in xrs5 than in the other cell lines, showing a higher cell killing effect in xrs5. To confirm that bystander factors secreted from irradiated cells caused these effects, we carried out medium transfer experiments using conventional X-irradiation. Medium conditioned for 24 h with irradiated cells was transferred to unirradiated cells and elevated induction of micronuclei was observed in xrs5. These results suggest that DNA double strand breaks rather than base damage are caused by factors secreted in the medium from irradiated cells
    corecore