37 research outputs found

    Global Reorganization of Replication Domains During Embryonic Stem Cell Differentiation

    Get PDF
    DNA replication in mammals is regulated via the coordinate firing of clusters of replicons that duplicate megabase-sized chromosome segments at specific times during S-phase. Cytogenetic studies show that these “replicon clusters” coalesce as subchromosomal units that persist through multiple cell generations, but the molecular boundaries of such units have remained elusive. Moreover, the extent to which changes in replication timing occur during differentiation and their relationship to transcription changes has not been rigorously investigated. We have constructed high-resolution replication-timing profiles in mouse embryonic stem cells (mESCs) before and after differentiation to neural precursor cells. We demonstrate that chromosomes can be segmented into multimegabase domains of coordinate replication, which we call “replication domains,” separated by transition regions whose replication kinetics are consistent with large originless segments. The molecular boundaries of replication domains are remarkably well conserved between distantly related ESC lines and induced pluripotent stem cells. Unexpectedly, ESC differentiation was accompanied by the consolidation of smaller differentially replicating domains into larger coordinately replicated units whose replication time was more aligned to isochore GC content and the density of LINE-1 transposable elements, but not gene density. Replication-timing changes were coordinated with transcription changes for weak promoters more than strong promoters, and were accompanied by rearrangements in subnuclear position. We conclude that replication profiles are cell-type specific, and changes in these profiles reveal chromosome segments that undergo large changes in organization during differentiation. Moreover, smaller replication domains and a higher density of timing transition regions that interrupt isochore replication timing define a novel characteristic of the pluripotent state

    Functional ultrastructure of the plant nucleolus

    Get PDF

    The RNA 3' cleavage factors CstF 64 kDa and CPSF 100 kDa are concentrated in nuclear domains closely associated with coiled bodies and newly synthesized RNA.

    Get PDF
    The cleavage stimulation factor (CstF), and the cleavage and polyadenylation specificity factor (CPSF) are necessary for 3'-terminal processing of polyadenylated mRNAs. To study the distribution of 3' cleavage factors in the nuclei of human T24 cells, monoclonal antibodies against the CstF 64 kDa subunit and against the CPSF 100 kDa subunit were used for immunofluorescent labelling. CstF 64 kDa and CPSF 100 kDa were distributed in a fibrogranular pattern in the nucleoplasm and, in addition, were concentrated in 1-4 bright foci. Double immunofluorescence labelling experiments revealed that the foci either overlapped with, or resided next to, a coiled body. Inhibition of transcription with alpha-amanitin or 5,6-dichloro-beta-D-ribofuranosyl-benzimidazole (DRB) resulted in the complete co-localization of coiled bodies and foci containing 3' cleavage factors. Electron microscopy on immunogold double-labelled cells revealed that the foci represent compact spherical fibrous structures, we named 'cleavage bodies', intimately associated with coiled bodies. We found that approximately 20% of the cleavage bodies contained a high concentration of newly synthesized RNA, whereas coiled bodies were devoid of nascent RNA. Our results suggest that the cleavage bodies that contain RNA are those that are adjacent to a coiled body. These findings reveal a dynamic and transcription-dependent interaction between different subnuclear domains, and suggest a relationship between coiled bodies and specific transcripts

    A protocol for studying the kinetics of RNA within cultured cells: application to ribosomal RNA.

    Full text link
    peer reviewedThis protocol describes a nonisotopic method for high-resolution investigation of the kinetics of RNA within the cell. This involves the incorporation of bromouridine-5'-triphosphate into RNA of living cells by lipofection followed by immunocytological detection of BrRNAs. The use of the same antibody identified either with fluorescence or with gold particles revealed the three-dimensional organization of sites containing labeled RNAs or their precise localization by using confocal and ultrastructural microscopy, respectively. Comparison of three-dimensional reconstruction obtained from the series of optical sections and ultrathin sections was extremely fruitful to describe topological and spatial dynamics of RNAs from their synthesis site inside the nucleus to the cytoplasm. Combined with immunolocalization of proteins involved in different nuclear activities and with highly resolved three-dimensional visualizations of the labelings, this method should also provide a significant contribution to our understanding of the functional, volumic organization of the cell nucleus. The entire protocol can be completed in approximately 10 d
    corecore