963 research outputs found

    Synthesis and Characterization of Ordered and Disordered Mesoporous Alumina as High-Performance Molybdenum-99 Adsorbents

    Get PDF
    Molybdenum-99 (99Mo) is the parent radioisotope of technetium-99m (99mTc),an essential medical radioisotope for diagnostic agents in nuclear medicine.In 99Mo/99mTc generator, a chromatography column system with 99Mo adsorbent as afiller is usually used to produce 99mTc in hospitals. However, it is still challenging to find high-performance adsorbentsfor Mo adsorption.We have synthesized both ordered and disordered mesoporous alumina and compared their performance as 99Mo adsorbents. These materials were prepared via a soft-templated method using a triblock copolymer as the template, followed by air calcination at 400°C.The amount of nitric acid (HNO3) and the drying time were adjusted systematically to synthesize the ordered mesoporous alumina. The obtained ordered and disordered mesoporous alumina were characterized by low-and wide-angle X-ray diffractions (XRD), nitrogen adsorption-desorption, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The 99Mo adsorption capacities of these materials were evaluated by using the batch method. The experimental results show that the ordered mesoporous alumina hasa higher 99Mo adsorption capacity of 72.06 mg(Mo)g-1 than the disordered mesoporous alumina (50.12 mg(Mo)g-1). The results indicate the excellent potential of ordered mesoporous alumina as an adsorbent for the 99Mo/99mTc generator column

    Computational Modeling of Solvent Effect on Fluorescence Spectra. Implications to the Fluorescent State Structure

    Full text link
    The financial support of the National Science Fund of Bulgaria (Contract DN 19/11, 10.12.2017) is gratefully acknowledged

    Design and Photophysics of 2-Vinyl Quinazolin-4-ones

    Full text link
    The reported work has been carried out under Contract DN 19/11, 10.12.2017, with the National Science Fund of Bulgaria

    Status and Performance of New Silicon Stripixel Detector for the PHENIX Experiment at RHIC: Beta Source, Cosmic-rays and Proton Beam at 120 GeV

    Full text link
    We are constructing a Silicon Vertex Tracker detector (VTX) for the PHENIX experiment at RHIC. Our main motivation is to enable measurements of heavy flavor production (charm and beauty) in p+p, p+d and A+A collisions. Such data will illuminate the properties of the matter created in high-energy heavy-ion collisions. The measurements also will reveal the distribution of gluons in protons from p+p collisions. The VTX detector consists of four layers of barrel detectors and covers |eta|< 1.2, and almost a 2pi in azimuth. The inner two silicon barrels consist of silicon pixel sensors; their technology accords with that of the ALICE1LHCB sensor-readout hybrid. The outer two barrels are silicon stripixel detectors with a new "spiral" design, and a single-sided sensor with 2-dimensional (X, U) readout. In this paper, we describe the silicon stripixel detector and discuss its performance, including its response to electrons from a beta source (90Sr), muons from cosmic-rays, and a 120 GeV proton beam. The results from the proton beam demonstrate that the principle of two-dimensional position sensitivity based on charge sharing works; the signal-to-noise value is 10.4, the position resolution is 33.6 um for X-stripixel (35.2 um for U-stripixel), and the tracking efficiencies in the X- and U-stripixels are, over 98.9 +/- 0.2%. The stripixel detector within the VTX project is in the pre-production phase.Comment: Accepted for publication in Journal of Instrumentation (JINST). Invited talk at Pixel 2008 International Workshop, September 23-26, 2008, Fermilab, Batavia, Illinois, U.S.

    J/psi suppression at forward rapidity in Au+Au collisions at sqrt(s_NN)=39 and 62.4 GeV

    Get PDF
    We present measurements of the J/psi invariant yields in sqrt(s_NN)=39 and 62.4 GeV Au+Au collisions at forward rapidity (1.2<|y|<2.2). Invariant yields are presented as a function of both collision centrality and transverse momentum. Nuclear modifications are obtained for central relative to peripheral Au+Au collisions (R_CP) and for various centrality selections in Au+Au relative to scaled p+p cross sections obtained from other measurements (R_AA). The observed suppression patterns at 39 and 62.4 GeV are quite similar to those previously measured at 200 GeV. This similar suppression presents a challenge to theoretical models that contain various competing mechanisms with different energy dependencies, some of which cause suppression and others enhancement.Comment: 365 authors, 10 pages, 11 figures, 4 tables. Submitted to Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Double Spin Asymmetry of Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s)=200 GeV

    Full text link
    We report on the first measurement of double-spin asymmetry, A_LL, of electrons from the decays of hadrons containing heavy flavor in longitudinally polarized p+p collisions at sqrt(s)=200 GeV for p_T= 0.5 to 3.0 GeV/c. The asymmetry was measured at mid-rapidity (|eta|<0.35) with the PHENIX detector at the Relativistic Heavy Ion Collider. The measured asymmetries are consistent with zero within the statistical errors. We obtained a constraint for the polarized gluon distribution in the proton of |Delta g/g(log{_10}x= -1.6^+0.5_-0.4, {mu}=m_T^c)|^2 < 0.033 (1 sigma), based on a leading-order perturbative-quantum-chromodynamics model, using the measured asymmetry.Comment: 385 authors, 17 pages, 15 figures, 5 tables. Submitted to Phys. Rev. D. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Measurement of higher cumulants of net-charge multiplicity distributions in Au++Au collisions at sNN=7.7200\sqrt{s_{_{NN}}}=7.7-200 GeV

    Full text link
    We report the measurement of cumulants (Cn,n=14C_n, n=1\ldots4) of the net-charge distributions measured within pseudorapidity (η<0.35|\eta|<0.35) in Au++Au collisions at sNN=7.7200\sqrt{s_{_{NN}}}=7.7-200 GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g. C1/C2C_1/C_2, C3/C1C_3/C_1) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do not observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. The measured values of C1/C2=μ/σ2C_1/C_2 = \mu/\sigma^2 and C3/C1=Sσ3/μC_3/C_1 = S\sigma^3/\mu can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy.Comment: 512 authors, 8 pages, 4 figures, 1 table. v2 is version accepted for publication in Phys. Rev. C as a Rapid Communication. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Medium modification of jet fragmentation in Au+Au collisions at sqrt(s_NN)=200 GeV measured in direct photon-hadron correlations

    Full text link
    The jet fragmentation function is measured with direct photon-hadron correlations in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The p_T of the photon is an excellent approximation to the initial p_T of the jet and the ratio z_T=p_T^h/p_T^\gamma is used as a proxy for the jet fragmentation function. A statistical subtraction is used to extract the direct photon-hadron yields in Au+Au collisions while a photon isolation cut is applied in p+p. I_ AA, the ratio of jet fragment yield in Au+Au to that in p+p, indicates modification of the jet fragmentation function. Suppression, most likely due to energy loss in the medium, is seen at high z_T. The fragment yield at low z_T is enhanced at large angles. Such a trend is expected from redistribution of the lost energy into increased production of low-momentum particles.Comment: 562 authors, 70 insitutions, 8 pages, and 3 figures. Submitted to Phys. Rev. Lett. v2 has minor changes to improve clarity. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore