126 research outputs found

    Measurement of the Integrated Faraday Rotations of BL Lac Objects

    Full text link
    We present the results of multi-frequency polarization VLA observations of radio sources from the complete sample of northern, radio-bright BL Lac objects compiled by H. Kuhr and G. Schmidt. These were used to determine the integrated rotation measures of 18 objects, 15 of which had never been measured previously, which hindered analysis of the intrinsic polarization properties of objects in the complete sample. These measurements make it possible to correct the observed orientations of the linear polarizations of these sources for the effect of Faraday rotation. The most probable origin for Faraday rotation in these objects is the Galactic interstellar medium. The results presented complete measurements of the integrated rotation measures for all 34 sources in the complete sample of BL Lac objects.Comment: 9 pages, 7 figure

    Absolute kinematics of radio source components in the complete S5 polar cap sample. III. First wide-field high-precision astrometry at 15.4 GHz

    Get PDF
    We report on the first wide-field, high-precision astrometric analysis of the 13 extragalactic radio sources of the complete S5 polar cap sample at 15.4 GHz. We describe new algorithms developed to enable the use of differenced phase delays in wide-field astrometric observations and discuss the impact of using differenced phase delays on the precision of the wide-field astrometric analysis. From this global fit, we obtained estimates of the relative source positions with precisions ranging from 14 to 200 μ\muas at 15.4 GHz, depending on the angular separation of the sources (from \sim1.6 to \sim20.8 degrees). These precisions are \sim10 times higher than the achievable precisions using the phase-reference mapping technique.Comment: 9 pages, 7 figure

    The BL Lac objects OQ 530 and S5 0716+714. Simultaneous observations in the X-rays, radio, optical and TeV bands

    Get PDF
    We present the results of the BeppoSAX observations of two BL Lacs, OQ 530 and S5 0716+714, as part of a ToO program for the simultaneous observation at radio, optical, X-ray and TeV energies. Both sources are detected in the LECS and MECS, with S5 0716+714 visible also in the PDS band, up to about 60 keV. The X-ray spectra of both sources are better fitted by a double power-law model, with a steep soft X-ray component flattening at harder energies, with breaks at 0.3 and 1.5 keV, respectively. The concave shape of the spectra in both objects is consistent with soft X-rays being produced by the synchrotron and harder X-rays by the inverse Compton processes. Also the X-ray variability properties confirm this scenario, in particular for S5 0716+714 our observation shows variations by about a factor 3 over one hour below 3 keV and no variability above. Their simultaneous broad band energy spectral distributions can be successfully interpreted within the frame of a homogeneous synchrotron and inverse Compton model, including a possible contribution from an external source of seed photons with the different spectral states of S5 0716+714 being reproduced by changing the injected power. The resulting parameters are fully consistent with the two sources being intermediate objects within the "sequence" scenario proposed for blazars.Comment: 10 pages, 8 figures, accepted by A&

    Spectral energy distributions of a large sample of BL Lacertae objects

    Full text link
    We have collected a large amount of multifrequency data for the objects in the Metsahovi Radio Observatory BL Lacertae sample and computed their spectral energy distributions (SED). This is the first time the SEDs of BL Lacs have been studied with a sample of over 300 objects. The synchrotron components of the SEDs were fitted with a parabolic function to determine the synchrotron peak frequency. We checked the dependence between luminosities at several frequency bands and synchrotron peak frequency to test the blazar sequence scenario, which states that the source luminosity depends on the location of the synchrotron peak. We also calculated broad band spectral indices and plotted them against each other and the peak frequency. The range of peak frequencies in our study was considerably extended compared to previous studies. There were 22 objects for which log\nu_{peak}>19. The data shows that at 5 GHz, 37 GHz and 5500 A there is negative correlation between luminosity and nu_{peak}. There is no significant correlation between source luminosity at synchrotron peak and peak frequency. Several low radio luminosity-low energy peaked BL Lacs were found. The negative correlation between broad band spectral indices and nu_{peak} is also significant, although there is substantial scatter. Therefore we find that neither alpha_{rx} nor alpha_{ro} can be used to determine the synchrotron peak of BL Lacs. On the grounds of our results we conclude that the blazar sequence scenario is not valid. In all our results the BL Lac population is continuous with no hint of the bimodality of the first BL Lac samples.Comment: 10 + 27 pages, 13 figures, accepted to A&

    On the coherence loss in phase-referenced VLBI observations

    Get PDF
    Context: Phase referencing is a standard calibration technique in radio interferometry, particularly suited for the detection of weak sources close to the sensitivity limits of the interferometers. However, effects from a changing atmosphere and inaccuracies in the correlator model may affect the phase-referenced images, leading to wrong estimates of source flux densities and positions. A systematic observational study of signal decoherence in phase referencing, and its effects in the image plane, has not been performed yet. Aims: We systematically studied how the signal coherence in Very-Long-Baseline-Interferometry (VLBI) observations is affected by a phase-reference calibration at different frequencies and for different calibrator-to-target separations. The results obtained should be of interest for a correct interpretation of many phase-referenced observations with VLBI. Methods: We observed a set of 13 strong sources (the S5 polar cap sample) at 8.4 and 15 GHz in phase-reference mode, with 32 different calibrator/target combinations spanning angular separations between 1.5 and 20.5 degrees. We obtained phase-referenced images and studied how the dynamic range and peak flux density depend on observing frequency and source separation. Results: We obtained dynamic ranges and peak flux densities of the phase-referenced images as a function of frequency and separation from the calibrator. We compared our results with models and phenomenological equations previously reported. Conclusions: The dynamic range of the phase-referenced images is strongly limited by the atmosphere at all frequencies and for all source separations. The limiting dynamic range is inversely proportional to the sine of the calibrator-to-target separation. We also find that the peak flux densities, relative to those obtained with the self-calibrated images, decrease with source separation.Comment: 5 pages, 3 figures. Submitted to A&A on 5.02.2010; accepted on 11.03.2010

    Water vapour at high redshift: Arecibo monitoring of the megamaser in MG J0414+0534

    Get PDF
    The study of water masers at cosmological distances would allow us to investigate the parsec-scale environment around powerful radio sources, to probe the physical conditions of the molecular gas in the inner parsecs of quasars, and to estimate their nuclear engine masses in the early universe. To derive this information, the nature of the maser source, jet or disk-maser, needs to be assessed through a detailed investigation of the observational characteristics of the line emission. We monitored the maser line in the lensed quasar MGJ0414+0534 at z = 2.64 with the 300-m Arecibo telescope for ~15 months to detect possible additional maser components and to measure a potential velocity drift of the lines. In addition, we follow the maser and continuum emissions to reveal significant variations in their flux density and to determine correlation or time-lag, if any, between them. The main maser line profile is complex and can be resolved into a number of broad features with line widths of 30-160 km/s. A new maser component was tentatively detected in October 2008 that is redshifted by 470 km/s w.r.t the systemic velocity of the quasar. The line width of the main maser feature increased by a factor of two between the Effelsberg and EVLA observations reported by Impellizzeri et al. (2008) and the first epoch of the Arecibo monitoring campaign. After correcting for the lens magnification, we find that the total H2O isotropic luminosity of the maser in MGJ0414+0534 is now ~30,000 Lsun, making this source the most luminous ever discovered.[Abridged]Comment: 8 pages, 6 figures, accepted for publication in A&

    A Multi-Epoch VLBI Survey of the Kinematics of CJF Sources; Part I: Model-Fit Parameters and Maps

    Full text link
    Context: This is the first of a series of papers presenting VLBI observations of the 293 Caltech-Jodrell Bank Flat-Spectrum (hereafter CJF) sources and their analysis. Aims: One of the major goals of the CJF is to make a statistical study of the apparent velocities of the sources. Methods: We have conducted global VLBI and VLBA observations at 5 GHz since 1990, accumulating thirteen separate observing campaigns. Results: We present here an overview of the observations, give details of the data reduction and present the source parameters resulting from a model-fitting procedure. For every source at every observing epoch, an image is shown, built up by restoring the model-fitted components, convolved with the clean beam, into the residual image, which was made by Fourier transforming the visibility data after first subtracting the model-fitted components in the uv-plane. Overplotted we show symbols to represent the model components. Conclusions: We have produced VLBI images of all but 5 of the 293 sources in the complete CJF sample at several epochs and investigated the kinematics of 266 AGN.Comment: Figure 1 and Table 2 are only available in electronic form at the CDS and soon at http://www.mpifr-bonn.mpg.de/staff/sbritzen/cjf.htm

    A multifrequency analysis of radio variability of blazars

    Full text link
    We have carried out a multifrequency analysis of the radio variability of blazars, exploiting the data obtained during the extensive monitoring programs carried out at the University of Michigan Radio Astronomy Observatory (UMRAO, at 4.8, 8, and 14.5 GHz) and at the Metsahovi Radio Observatory (22 and 37 GHz). Two different techniques detect, in the Metsahovi light curves, evidences of periodicity at both frequencies for 5 sources (0224+671, 0945+408, 1226+023, 2200+420, and 2251+158). For the last three sources consistent periods are found also at the three UMRAO frequencies and the Scargle (1982) method yields an extremely low false-alarm probability. On the other hand, the 22 and 37 GHz periodicities of 0224+671 and 0945+408 (which were less extensively monitored at Metsahovi and for which we get a significant false-alarm probability) are not confirmed by the UMRAO database, where some indications of ill-defined periods about a factor of two longer are retrieved. We have also investigated the variability index, the structure function, and the distribution of intensity variations of the most extensively monitored sources. We find a statistically significant difference in the distribution of the variability index for BL Lac objects compared to flat-spectrum radio quasars (FSRQs), in the sense that the former objects are more variable. For both populations the variability index steadily increases with increasing frequency. The distribution of intensity variations also broadens with increasing frequency, and approaches a log-normal shape at the highest frequencies. We find that variability enhances by 20-30% the high frequency counts of extragalactic radio-sources at bright flux densities, such as those of the WMAP and Planck surveys.Comment: A&A accepted. 12 pages, 16 figure

    Optical and radio behaviour of the BL Lacertae object 0716+714

    Get PDF
    Eight optical and four radio observatories have been intensively monitoring the BL Lac object 0716+714 in the last years: 4854 data points have been collected in the UBVRI bands since 1994, while radio light curves extend back to 1978. Many of these data are presented here for the first time. The long-term trend shown by the optical light curves seems to vary with a characteristic time scale of about 3.3 years, while a longer period of 5.5-6 years seems to characterize the radio long-term variations. In general, optical colour indices are only weakly correlated with brightness. The radio flux behaviour at different frequencies is similar, but the flux variation amplitude decreases with increasing wavelength. The radio spectral index varies with brightness (harder when brighter), but the radio fluxes seem to be the sum of two different-spectrum contributions: a steady base level and a harder-spectrum variable component. Once the base level is removed, the radio variations appear as essentially achromatic, similarly to the optical behaviour. Flux variations at the higher radio frequencies lead the lower-frequency ones with week-month time scales. The behaviour of the optical and radio light curves is quite different, the broad radio outbursts not corresponding in time to the faster optical ones and the cross-correlation analysis indicating only weak correlation with long time lags. However, minor radio flux enhancements simultaneous with the major optical flares can be recognized, which may imply that the mechanism producing the strong flux increases in the optical band also marginally affects the radio one.Comment: 18 pages, 15 Postscript figures, 5 JPEG figures, accepted for publication in A&

    Absolute kinematics of radio source components in the complete S5 polar cap sample

    Get PDF
    We observed the thirteen extragalactic radio sources of the complete S5 polar cap sample at 15.4 GHz with the Very Long Baseline Array, on 27 July 1999 (1999.57) and 15 June 2000 (2000.46). We present the maps from those two epochs, along with maps obtained from observations of the 2 cm VLBA survey for some of the sources of the sample, making a total of 40 maps. We discuss the apparent morphological changes displayed by the radio sources between the observing epochs. Our VLBA observations correspond to the first two epochs at 15.4 GHz of a program to study the absolute kinematics of the radio source components of the members of the sample, by means of phase delay astrometry at 8.4 GHz, 15.4 GHz, and 43 GHz. Our 15.4 GHz VLBA imaging allowed us to disentangle the inner milliarcsecond structure of some of the sources, thus resolving components that appeared blended at 8.4 GHz. For most of the sources, we identified the brightest feature in each radio source with the core. These identifications are supported by the spectral index estimates for those brightest features, which are in general flat, or even inverted. Most of the sources display core-dominance in the overall emission. We find that three of the sources have their most inverted spectrum component shifted with respect to the origin in the map, which approximately coincides with the peak-of-brightness at both 15.4 GHz and 8.4 GHz.Comment: Accepted by A&A (in press). 23 pages, 14 figure
    corecore