78 research outputs found

    C.E.R.A. once every 4 weeks corrects anaemia and maintains haemoglobin in patients with chronic kidney disease not on dialysis

    Get PDF
    Background. No previous randomized controlled studies have been reported examining de novo, once every 4 weeks (Q4W) administration of erythropoiesis-stimulating agents in chronic kidney disease (CKD) patients. We report results from a randomized multinational study that compared continuous erythropoietin receptor activator (C.E.R.A.) Q4W with darbepoetin alfa once weekly (QW) or every 2 weeks (Q2W) for the correction of anaemia in non-dialysis CKD patients

    Stability of the ‘L12 stalk’ in ribosomes from mesophilic and (hyper)thermophilic Archaea and Bacteria

    Get PDF
    The ribosomal stalk complex, consisting of one molecule of L10 and four or six molecules of L12, is attached to 23S rRNA via protein L10. This complex forms the so-called ‘L12 stalk’ on the 50S ribosomal subunit. Ribosomal protein L11 binds to the same region of 23S rRNA and is located at the base of the ‘L12 stalk’. The ‘L12 stalk’ plays a key role in the interaction of the ribosome with translation factors. In this study stalk complexes from mesophilic and (hyper)thermophilic species of the archaeal genus Methanococcus and from the Archaeon Sulfolobus solfataricus, as well as from the Bacteria Escherichia coli, Geobacillus stearothermophilus and Thermus thermophilus, were overproduced in E.coli and purified under non-denaturing conditions. Using filter-binding assays the affinities of the archaeal and bacterial complexes to their specific 23S rRNA target site were analyzed at different pH, ionic strength and temperature. Affinities of both archaeal and bacterial complexes for 23S rRNA vary by more than two orders of magnitude, correlating very well with the growth temperatures of the organisms. A cooperative effect of binding to 23S rRNA of protein L11 and the L10/L12(4) complex from mesophilic and thermophilic Archaea was shown to be temperature-dependent

    A direct role for SNX9 in the biogenesis of filopodia.

    Get PDF
    Filopodia are finger-like actin-rich protrusions that extend from the cell surface and are important for cell-cell communication and pathogen internalization. The small size and transient nature of filopodia combined with shared usage of actin regulators within cells confounds attempts to identify filopodial proteins. Here, we used phage display phenotypic screening to isolate antibodies that alter the actin morphology of filopodia-like structures (FLS) in vitro. We found that all of the antibodies that cause shorter FLS interact with SNX9, an actin regulator that binds phosphoinositides during endocytosis and at invadopodia. In cells, we discover SNX9 at specialized filopodia in Xenopus development and that SNX9 is an endogenous component of filopodia that are hijacked by Chlamydia entry. We show the use of antibody technology to identify proteins used in filopodia-like structures, and a role for SNX9 in filopodia

    Novel Disease Susceptibility Factors for Fungal Necrotrophic Pathogens in Arabidopsis

    Get PDF
    Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs) from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence) factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens.Funding: This work was supported by the Spanish MINECO (BFU2012 to PV), and Generalitat Valenciana (Prometeo2014/020 to PV). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Dobón Alonso, A.; Canet Perez, JV.; García-Andrade Serrano, J.; Angulo, C.; Neumetzler, L.; Persson, S.; Vera Vera, P. (2015). Novel Disease Susceptibility Factors for Fungal Necrotrophic Pathogens in Arabidopsis. PLoS Pathogens. 11(4):1-30. https://doi.org/10.1371/journal.ppat.1004800S13011

    Identification of metastasis-associated genes by transcriptional profiling of a metastasizing versus a non-metastasizing human melanoma cell line.

    No full text
    Item does not contain fulltextIn order to identify genes associated with the metastatic phenotype we have compared the expression pattern of 6800 genes in a metastatic (NMCL-1) versus a non-metastatic (530) human melanoma cell line making use of DNA microarrays. The differentially expressed genes identified are involved in control of transcription, regulation of the cell-cycle, proteolysis, cell adhesion, immune response and signaling. A remarkable feature of the system under investigation is the consistent down-regulation of MHC-related and cell adhesion mediating genes in the metastatic cell line
    corecore