21 research outputs found

    Identification of androgen receptor phosphorylation in the primate ovary in vivo

    Get PDF
    The androgen receptor (AR) is a member of the nuclear receptor superfamily, and is important for both male and female reproductive health. The receptor is a target for a number of post-translational modifications including phosphorylation, which has been intensively studied in vitro. However, little is known about the phosphorylation status of the receptor in target tissues in vivo. The common marmoset is a useful model for studying human reproductive functions, and comparison of the AR primary sequence from this primate shows high conservation of serines known to be phosphorylated in the human receptor and corresponding flanking amino acids. We have used a panel of phosphospecific antibodies to study AR phosphorylation in the marmoset ovary throughout the follicular phase and after treatment with GNRH antagonist or testosterone propionate. In normal follicular phase ovaries, total AR (both phosphorylated and non-phosphorylated forms) immunopositive staining was observed in several cell types including granulosa cells of developing follicles, theca cells and endothelial cells lining blood vessels. Receptor phosphorylation at serines 81, 308, and 650 was detected primarily in the granulosa cells of developing follicles, surface epithelium, and vessel endothelial cells. Testosterone treatment lead to a modest increase in AR staining in all stages of follicle studied, while GNRH antagonist had no effect. Neither treatment significantly altered the pattern of phosphorylation compared to the control group. These results demonstrate that phosphorylation of the AR occurs, at a subset of serine residues, in a reproductive target tissue in vivo, which appears refractory to hormonal manipulations

    Spermatogenesis-Specific Features of the Meiotic Program in Caenorhabditis elegans

    Get PDF
    In most sexually reproducing organisms, the fundamental process of meiosis is implemented concurrently with two differentiation programs that occur at different rates and generate distinct cell types, sperm and oocytes. However, little is known about how the meiotic program is influenced by such contrasting developmental programs. Here we present a detailed timeline of late meiotic prophase during spermatogenesis in Caenorhabditis elegans using cytological and molecular landmarks to interrelate changes in chromosome dynamics with germ cell cellularization, spindle formation, and cell cycle transitions. This analysis expands our understanding C. elegans spermatogenesis, as it identifies multiple spermatogenesis-specific features of the meiotic program and provides a framework for comparative studies. Post-pachytene chromatin of spermatocytes is distinct from that of oocytes in both composition and morphology. Strikingly, C. elegans spermatogenesis includes a previously undescribed karyosome stage, a common but poorly understood feature of meiosis in many organisms. We find that karyosome formation, in which chromosomes form a constricted mass within an intact nuclear envelope, follows desynapsis, involves a global down-regulation of transcription, and may support the sequential activation of multiple kinases that prepare spermatocytes for meiotic divisions. In spermatocytes, the presence of centrioles alters both the relative timing of meiotic spindle assembly and its ultimate structure. These microtubule differences are accompanied by differences in kinetochores, which connect microtubules to chromosomes. The sperm-specific features of meiosis revealed here illuminate how the underlying molecular machinery required for meiosis is differentially regulated in each sex

    Effect of varying glucose and glucosamine concentration in vitro on mouse oocyte maturation and developmental competence

    Get PDF
    Published online: 7 November 2012The effects of hyper- and hypo-glycaemic conditions during the in vitro maturation of mouse cumulus–oocyte complexes on developmental competence were examined, with an emphasis on the role of the hexosamine biosynthesis pathway. A low (1 mM) glucose concentration achieved optimal oocyte competence (3-fold higher blastocyst development rate compared with high (30 mM) glucose, P < 0.05). In addition, glucose supplementation during only the first hour after release from the follicle was necessary and sufficient to support oocyte maturation and embryo development to the blastocyst stage. Glucosamine (a known hyperglycaemic mimetic and specific activator of the hexosamine pathway) was able to substitute for glucose during this first hour, indicating that flux through the hexosamine pathway is essential for oocyte competence. In the absence of glucose throughout the maturation period, glucosamine was not able to increase developmental competence, and at higher concentrations (2.5 and 5 mM) had a detrimental effect on MII and blastocyst development rates, compared with controls (P < 0.05). These experiments underscore the importance of glucose metabolic pathways during in vitro maturation and support the concept that excess flux through the hexosamine pathway has detrimental consequences.L. A. Frank, M. L. Sutton-McDowall, D. L. Russell, X. Wang, D. K. Feil, R. B. Gilchrist, and J. G. Thompso

    Epidermal growth factor receptor signaling is required for normal ovarian steroidogenesis and oocyte maturation

    No full text
    The midcycle luteinizing hormone (LH) surge triggers several tightly linked ovarian processes, including steroidogenesis, oocyte maturation, and ovulation. We designed studies to determine whether epidermal growth factor receptor (EGFR)-mediated signaling might serve as a common regulator of these activities. Our results showed that EGF promoted steroidogenesis in two different in vitro models of oocyte-granulosa cell complexes. Inhibition of the EGFR kinase prevented EGF-induced steroidogenesis in these in vitro systems and blocked LH-induced steroidogenesis in intact follicles primed with pregnant mare serum gonadotropin. Similarly, inhibition of the EGFR kinase attenuated LH-induced steroidogenesis in MA-10 Leydig cells. Together, these results indicate that EGFR signaling is critical for normal gonadotropin-induced steroidogenesis in both male and female gonads. Interestingly, inhibition of metalloproteinase-mediated cleavage of membrane-bound EGF moieties abrogated LH-induced steroidogenesis in ovarian follicles but not MA-10 cells, suggesting that LH receptor signaling activates the EGFR by different mechanisms in these two models. Finally, steroids promoted oocyte maturation in several ovarian follicle models, doing so by signaling through classical steroid receptors. We present a model whereby steroid production may serve as one of many integrated signals triggered by EGFR signaling to promote oocyte maturation in gonadotropin-stimulated follicles

    High blood pressure arising from a defect in vascular function

    No full text
    Hypertension, a major cardiovascular risk factor and cause of mortality worldwide, is thought to arise from primary renal abnormalities. However, the etiology of most cases of hypertension remains unexplained. Vascular tone, an important determinant of blood pressure, is regulated by nitric oxide, which causes vascular relaxation by increasing intracellular cGMP and activating cGMP-dependent protein kinase I (PKGI). Here we show that mice with a selective mutation in the N-terminal protein interaction domain of PKGIα display inherited vascular smooth muscle cell abnormalities of contraction, abnormal relaxation of large and resistance blood vessels, and increased systemic blood pressure. Renal function studies and responses to changes in dietary sodium in the PKGIα mutant mice are normal. These data reveal that PKGIα is required for normal VSMC physiology and support the idea that high blood pressure can arise from a primary abnormality of vascular smooth muscle cell contractile regulation, suggesting a new approach to the diagnosis and therapy of hypertension and cardiovascular diseases
    corecore