642 research outputs found

    Dyadic Clustering in International Relations

    Full text link
    Quantitative empirical inquiry in international relations often relies on dyadic data. Standard analytic techniques do not account for the fact that dyads are not generally independent of one another. That is, when dyads share a constituent member (e.g., a common country), they may be statistically dependent, or "clustered." Recent work has developed dyadic clustering robust standard errors (DCRSEs) that account for this dependence. Using these DCRSEs, we reanalyzed all empirical articles published in International Organization between January 2014 and January 2020 that feature dyadic data. We find that published standard errors for key explanatory variables are, on average, approximately half as large as DCRSEs, suggesting that dyadic clustering is leading researchers to severely underestimate uncertainty. However, most (67% of) statistically significant findings remain statistically significant when using DCRSEs. We conclude that accounting for dyadic clustering is both important and feasible, and offer software in R and Stata to facilitate use of DCRSEs in future research

    Microdosimetry of electrons in liquid water using the low-energy models of Geant4

    Get PDF
    The biological effects of ionizing radiation at the cellular level are frequently studied using the well-known formalism of microdosimetry, which provides a quantitative description of the stochastic aspects of energy deposition in irradiated media. Energy deposition can be simulated using Monte Carlo codes, some adopting a computationally efficient condensed-history approach, while others follow a more detailed track-structure approach. In this work, we present the simulation of microdosimetry spectra and related quantities (frequency-mean and dose-mean lineal energies) for incident monoenergetic electrons (50 eV-10 keV) in spheres of liquid water with dimensions comparable to the size of biological targets: base pairs (2 nm diameter), nucleosomes (10 nm), chromatin fibres (30 nm) and chromosomes (300 nm). Simulations are performed using the condensed-history low-energy physics models ( Livermore and Penelope ) and the track-structure Geant4-DNA physics models, available in the Geant4 Monte Carlo simulation toolkit. The spectra are compared and the influence of simulation parameters and different physics models, with emphasis on recent developments, is discussed, underlining the suitability of Geant4-DNA models for microdosimetry simulations. It is further shown that with an appropriate choice of simulation parameters, condensed-history transport may yield reasonable results for sphere sizes as small as a few tens of a nanometer

    A chlorophyll-deficient, highly reflective soybean mutant: radiative forcing and yield gaps

    Get PDF
    Sunlight absorbed at the Earth’s surface is re-emitted as longwave radiation. Increasing atmospheric concentrations of CO2 and other greenhouse gases trap an increasing fraction of such heat, leading to global climate change. Here we show that when a chlorophyll (Chl)-deficient soybean mutant is grown in the field, the fraction of solar-irradiance which is reflected, rather than absorbed, is consistently higher than in commercial varieties. But, while the effect on radiative forcing during the crop cycle at the scale of the individual experimental plot was found to be large (−4.1± 0.6 W m−2 ), global substitution of the current varieties with this genotype would cause a small increase in global surface albedo, resulting in a global shortwave radiative forcing of −0.003 W m−2 , corresponding to 4.4 Gt CO2eq. At present, this offsetting effect would come at the expense of reductions to yields, probably associated with different dynamic of photosynthetic response in the Chl-deficient mutant. The idea of reducing surface-driven radiative forcing by means of Chl-deficient crops therefore requires that novel high-yielding and high-albedo crops are made available soon.publishedVersio

    Litter quality and temperature modulate microbial diversity effects on decomposition in model experiments

    Get PDF
    The consequences of decline in biodiversity for ecosystem functioning is a major concern in soil ecology. Recent research efforts have been mostly focused on terrestrial plants, while, despite their importance in ecosystems, little is known about soil microbial communities. This work aims at investigating the effects of fungal and bacterial species richness on the dynamics of leaf litter decomposition. Synthetic microbial communities with species richness ranging from 1 to 64 were assembled in laboratory microcosms and used in three factorial experiments of decomposition. Thereafter, the functionality of the different microcosms was determined by measuring their capability to decompose materials with different chemical properties, including two species of litter (Quercus ilex L. and Hedera helix L.), cellulose strips and woody sticks. Incubation was done in microcosms at two temperatures (12°C and 24°C) for 120 days. The number of microbial species inoculated in the microcosms positively affected decomposition rates of Q. ilex and H. helix litters, while relationships found for cellulose and wood were not statistically significant. Diversity effect was greater at higher incubation temperature. We found lower variability of decay rates in microcosms with higher inoculated species richness of microbial communities. Our study pointed out that the relationships between inoculum microbial diversity and litter decomposition is dependent on temperature and litter quality. Therefore, the loss of microbial species may adversely affects ecosystem functionality under specific environmental conditions

    Transience analysis of bursty traffic with erbium doped fiber amplifiers

    Get PDF
    Copyright © [2009] IEEE. Reprinted from ICTON 2009. ISBN 978-1-4244-4826-5. This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, we investigate experimentally the impact of optical amplifiers, namely Erbium Doped Fiber Amplifiers (EDFA) on Optical Burst Switching (OBS) networks, operating at 2.5 Gb/s (typical bit rate for current passive optical networks - PON). Bursts with 212 – 1 and 216 – 1 pseudo random binary sequence (PRBS) were studied, with different idle times. The use of traffic with variable idle time was assessed in order to evaluate the effect on the burst initial amplitude. We also analyzed the performance of the packet based system by measuring the Q factor at the receiver and concluded that the performance is not affected by the type of traffic (variable or fixed idle times)

    Different pathways but same result? Comparing chemistry and biological effects of burned and decomposed litter

    Get PDF
    Litter burning and biological decomposition are oxidative processes co-occurring in many terrestrial ecosystems, producing organic matter with different chemical properties and differently affecting plant growth and soil microbial activity. Here, we tested the chemical convergence hypothesis (i.e. materials with different initial chemistry tend to converge towards a common profile, with similar biological effects, as the oxidative process advances) for burning and decomposition. We compared the molecular composition of 63 organic materials - 7 litter types either fresh, decomposed for 30, 90, 180 days, or heated at 100, 200, 300, 400, 500 \ub0C - as assessed by 13C NMR. We used litter water extracts (5% dw) as treatments in bioassays on plant (Lepidium sativum) and fungal (Aspergillus niger) growth, and a washed quartz sand amended with litter materials (0.5 % dw) to assess heterotrophic respiration by CO2 flux chamber. We observed different molecular variations for materials either burning (i.e. a sharp increase of aromatic C and a decrease of most other fractions above 200 \ub0C) or decomposing (i.e. early increase of alkyl, methoxyl and N-alkyl C and decrease of O-alkyl and di-O-alkyl C fractions). Soil respiration and fungal growth progressively decreased with litter age and temperature. Plant growth underwent an inhibitory effect by untreated litter, more and less rapidly released over decomposing and burning materials, respectively. Correlation analysis between NMR and bioassay data showed that opposite responses for soil respiration and fungi, compared to plants, are related to essentially the same C molecular types. Our findings suggest a functional convergence of decomposed and burnt organic substrates, emerging from the balance between the bioavailability of labile C sources and the presence of recalcitrant and pyrogenic compounds, oppositely affecting different trophic levels

    Faster N release, but not C loss, from leaf litter of invasives compared to native species in mediterranean ecosystems

    Get PDF
    Plant invasions can have relevant impacts on biogeochemical cycles, whose extent, in Mediterranean ecosystems, have not yet been systematically assessed comparing litter carbon (C) and nitrogen (N) dynamics between invasive plants and native communities. We carried out a 1-year litterbag experiment in 4 different plant communities (grassland, sand dune, riparian and mixed forests) on 8 invasives and 24 autochthonous plant species, used as control. Plant litter was characterized for mass loss, N release, proximate lignin and litter chemistry by 13C CPMAS NMR. Native and invasive species showed significant differences in litter chemical traits, with invaders generally showing higher N concentration and lower lignin/N ratio. Mass loss data revealed no consistent differences between native and invasive species, although some woody and vine invaders showed exceptionally high decomposition rate. In contrast, N release rate from litter was faster for invasive plants compared to native species. N concentration, lignin content and relative abundance of methoxyl and N-alkyl C region from 13C CPMAS NMR spectra were the parameters that better explained mass loss and N mineralization rates. Our findings demonstrate that during litter decomposition invasive species litter has no different decomposition rates but greater N release rate compared to natives. Accordingly, invasives are expected to affect N cycle in Mediterranean plant communities, possibly promoting a shift of plant assemblages
    • …
    corecore