311 research outputs found

    Detection of an ultrabright submillimetre galaxy in the Subaru/XMM–Newton Deep Field using AzTEC/ASTE

    Get PDF
    We report on the detection of an extremely bright (∌37 mJy at 1100 Όm and ∌91 mJy at 880 Όm) submillimetre galaxy (SMG), AzTEC-ASTE-SXDF1100.001 (hereafter referred to as SXDF1100.001 or Orochi), discovered in the 1100 Όm observations of the Subaru/XMM–Newton Deep Field using AzTEC on ASTE. Subsequent CARMA 1300-ÎŒm and SMA 880-ÎŒm observations successfully pinpoint the location of Orochi and suggest that it has two components, one extended [full width at half-maximum (FWHM) of ∌4 arcsec] and one compact (unresolved). Z-Spec on CSO has also been used to obtain a wide-band spectrum from 190 to 308 GHz, although no significant emission/absorption lines were found. The derived upper limit to the line-to-continuum flux ratio is 0.1–0.3 (2σ) across the Z-Spec band. Based on the analysis of the derived spectral energy distribution from optical to radio wavelengths of possible counterparts near the SMA/CARMA peak position, we suggest that Orochi is a lensed, optically dark SMG lying at z ∌ 3.4 behind a foreground, optically visible (but red) galaxy at z ∌ 1.4. The deduced apparent (i.e., no correction for magnification) infrared luminosity (L_(IR)) and star formation rate (SFR) are 6 × 10^(13) L_⊙ and 11 000 M_⊙ yr^(−1), respectively, assuming that the L_(IR) is dominated by star formation. These values suggest that Orochi will consume its gas reservoir within a short time-scale (3 × 10^7 yr), which is indeed comparable to those in extreme starbursts like the centres of local ultraluminous infrared galaxies (ULIRGs)

    AzTEC/ASTE 1.1-mm Survey of the AKARI Deep Field South: source catalogue and number counts

    Get PDF
    We present results of a 1.1 mm deep survey of the AKARI Deep Field South (ADF-S) with AzTEC mounted on the Atacama Submillimetre Telescope Experiment (ASTE). We obtained a map of 0.25 sq. deg area with an rms noise level of 0.32-0.71 mJy. This is one of the deepest and widest maps thus far at millimetre and submillimetre wavelengths. We uncovered 198 sources with a significance of 3.5-15.6 sigma, providing the largest catalog of 1.1 mm sources in a contiguous region. Most of the sources are not detected in the far-infrared bands of the AKARI satellite, suggesting that they are mostly at z ~ 1.5 given the detection limits. We constructed differential and cumulative number counts in the ADF-S, the Subaru/XMM Newton Deep Field (SXDF), and the SSA 22 field surveyed by AzTEC/ASTE, which provide currently the tightest constraints on the faint end. The integration of the best-fit number counts in the ADF-S find that the contribution of 1.1 mm sources with fluxes >=1 mJy to the cosmic infrared background (CIB) at 1.1 mm is 12-16%, suggesting that the large fraction of the CIB originates from faint sources of which the number counts are not yet constrained. We estimate the cosmic star-formation rate density contributed by 1.1 mm sources with >=1 mJy using the best-fit number counts in the ADF-S and find that it is lower by about a factor of 5-10 compared to those derived from UV/optically-selected galaxies at z ~ 2-3. The fraction of stellar mass of the present-day universe produced by 1.1 mm sources with >=1 mJy at z >= 1 is ~20%, calculated by the time integration of the star-formation rate density. If we consider the recycled fraction of >0.4, which is the fraction of materials forming stars returned to the interstellar medium, the fraction of stellar mass produced by 1.1 mm sources decrease to <~10%.Comment: 15 pages, 12 figure, accepted for publication in MNRA

    SXDF-UDS-CANDELS-ALMA 1.5 arcmin2^2 deep survey

    Full text link
    We have conducted 1.1 mm ALMA observations of a contiguous 105â€Čâ€Č×50â€Čâ€Č105'' \times 50'' or 1.5 arcmin2^2 window in the SXDF-UDS-CANDELS. We achieved a 5σ\sigma sensitivity of 0.28 mJy, providing a flat sensus of dusty star-forming galaxies with LIR∌6×1011L_{\rm IR} \sim6\times10^{11} L⊙L_\odot (for TdustT_{\rm dust} =40K) up to z∌10z\sim10 thanks to the negative K-correction at this wavelength. We detected 5 brightest sources (S/N>>6) and 18 low-significance sources (5>>S/N>>4; these may contain spurious detections, though). One of the 5 brightest ALMA sources (S1.1mm=0.84±0.09S_{\rm 1.1mm} = 0.84 \pm 0.09 mJy) is extremely faint in the WFC3 and VLT/HAWK-I images, demonstrating that a contiguous ALMA imaging survey is able to uncover a faint dust-obscured population that is invisible in deep optical/near-infrared surveys. We found a possible [CII]-line emitter at z=5.955z=5.955 or a low-zz CO emitting galaxy within the field, which may allow us to constrain the [CII] and/or the CO luminosity functions across the history of the universe.Comment: 4 pages, 2 figures, 1 table, to appear in the proceedings of IAU Symposium 319 "Galaxies at High Redshift and Their Evolution over Cosmic Time", eds. S. Kaviraj & H. Ferguso

    (Sub)millimetre interferometric imaging of a sample of COSMOS/AzTEC submillimetre galaxies. II. The spatial extent of the radio-emitting regions

    Get PDF
    Radio emission at centimetre wavelengths from highly star-forming galaxies, like submillimetre galaxies (SMGs), is dominated by synchrotron radiation arising from supernova activity. Hence, radio continuum imaging has the potential to determine the spatial extent of star formation in these types of galaxies. Using deep, high-resolution (1σ = 2.3 ÎŒJy beam-1; 0.75 arcsec) centimetre radio-continuum observations taken by the Karl G. Jansky Very Large Array (VLA)-COSMOS 3 GHz Large Project, we studied the radio-emitting sizes of a flux-limited sample of SMGs in the COSMOS field. The target SMGs were originally discovered in a 1.1 mm continuum survey carried out with the AzTEC bolometer, and followed up with higher resolution interferometric (sub)millimetre continuum observations. Of the 39 SMGs studied here, 3 GHz emission was detected towards 18 of them (~46 ± 11%) with signal-to-noise ratios in the range of S/N = 4.2-37.4. Towards four SMGs (AzTEC2, 5, 8, and 11), we detected two separate 3 GHz sources with projected separations of ~1''&dotbelow;5-6''&dotbelow;6, but they might be physically related in only one or two cases (AzTEC2 and 11). Using two-dimensional elliptical Gaussian fits, we derived a median deconvolved major axis FWHM size of 0''&dotbelow;54±0''&dotbelow;11 for our 18 SMGs detected at 3 GHz. For the 15 SMGs with known redshift we derived a median linear major axis FWHM of 4.2 ± 0.9 kpc. No clear correlation was found between the radio-emitting size and the 3 GHz or submm flux density, or the redshift of the SMG. However, there is a hint of larger radio sizes at z ~ 2.5-5 compared to lower redshifts. The sizes we derived are consistent with previous SMG sizes measured at 1.4 GHz and in mid-J CO emission, but significantly larger than those seen in the (sub)mm continuum emission (typically probing the rest-frame far-infrared with median FWHM sizes of only ~1.5-2.5 kpc). One possible scenario is that SMGs have i) an extended gas component with a low dust temperature, which can be traced by low- to mid-J CO line emission and radio continuum emission; and ii) a warmer, compact starburst region giving rise to the high-excitation line emission of CO, which could dominate the dust continuum size measurements. Because of the rapid cooling of cosmic-ray electrons in dense starburst galaxies (~104-105 yr), the more extended synchrotron radio-emitting size being a result of cosmic-ray diffusion seems unlikely. Instead, if SMGs are driven by galaxy mergers - a process where the galactic magnetic fields can be pulled out to larger spatial scales - the radio synchrotron emission might arise from more extended magnetised interstellar medium around the starburst region

    Detection of an ultra-bright submillimeter galaxy in the Subaru/XMM-Newton Deep Field using AzTEC/ASTE

    Get PDF
    We report the detection of an extremely bright (∌\sim37 mJy at 1100 ÎŒ\mum and ∌\sim91 mJy at 880 ÎŒ\mum) submillimeter galaxy (SMG), AzTEC-ASTE-SXDF1100.001 (hereafter referred to as SXDF1100.001 or Orochi), discovered in 1100 ÎŒ\mum observations of the Subaru/XMM-Newton Deep Field using AzTEC on ASTE. Subsequent CARMA 1300 ÎŒ\mum and SMA 880 ÎŒ\mum observations successfully pinpoint the location of Orochi and suggest that it has two components, one extended (FWHM of ∌\sim 4â€Čâ€Č^{\prime\prime}) and one compact (unresolved). Z-Spec on CSO has also been used to obtain a wide band spectrum from 190 to 308 GHz, although no significant emission/absorption lines are found. The derived upper limit to the line-to-continuum flux ratio is 0.1--0.3 (2 σ\sigma) across the Z-Spec band. Based on the analysis of the derived spectral energy distribution from optical to radio wavelengths of possible counterparts near the SMA/CARMA peak position, we suggest that Orochi is a lensed, optically dark SMG lying at z∌3.4z \sim 3.4 behind a foreground, optically visible (but red) galaxy at z∌1.4z \sim 1.4. The deduced apparent (i.e., no correction for magnification) infrared luminosity (LIRL_{\rm IR}) and star formation rate (SFR) are 6×10136 \times 10^{13} L⊙L_{\odot} and 11000 M⊙M_{\odot} yr−1^{-1}, respectively, assuming that the LIRL_{\rm IR} is dominated by star formation. These values suggest that Orochi will consume its gas reservoir within a short time scale (3×1073 \times 10^{7} yr), which is indeed comparable to those in extreme starbursts like the centres of local ULIRGs.Comment: 18 pages, 13 figure

    A massive, quiescent galaxy at redshift of z=3.717

    Get PDF
    In the early Universe finding massive galaxies that have stopped forming stars present an observational challenge as their rest-frame ultraviolet emission is negligible and they can only be reliably identified by extremely deep near-infrared surveys. These have revealed the presence of massive, quiescent early-type galaxies appearing in the universe as early as z∌\sim2, an epoch 3 Gyr after the Big Bang. Their age and formation processes have now been explained by an improved generation of galaxy formation models where they form rapidly at z∌\sim3-4, consistent with the typical masses and ages derived from their observations. Deeper surveys have now reported evidence for populations of massive, quiescent galaxies at even higher redshifts and earlier times, however the evidence for their existence, and redshift, has relied entirely on coarsely sampled photometry. These early massive, quiescent galaxies are not predicted by the latest generation of theoretical models. Here, we report the spectroscopic confirmation of one of these galaxies at redshift z=3.717 with a stellar mass of 1.7×\times1011^{11} M⊙_\odot whose absorption line spectrum shows no current star-formation and which has a derived age of nearly half the age of the Universe at this redshift. The observations demonstrates that the galaxy must have quickly formed the majority of its stars within the first billion years of cosmic history in an extreme and short starburst. This ancestral event is similar to those starting to be found by sub-mm wavelength surveys pointing to a possible connection between these two populations. Early formation of such massive systems is likely to require significant revisions to our picture of early galaxy assembly.Comment: 6 pages, 7 figures. This is the final preprint corresponding closely to the published version. Uploaded 6 months after publication in accordance with Nature polic

    HerMES: The Contribution to the Cosmic Infrared Background from Galaxies Selected by Mass and Redshift

    Get PDF
    We quantify the fraction of the cosmic infrared background (CIB) that originates from galaxies identified in the UV/optical/near-infrared by stacking 81,250 (~35.7 arcmin^(–2)) K-selected sources (K_(AB) 350 ÎŒm. The contribution from galaxies in the log(M/M_☉) = 9.0-9.5 (lowest) and log(M/M_☉) = 11.0-12.0 (highest) stellar-mass bins contribute the least—both of order 5%—although the highest stellar-mass bin is a significant contributor to the luminosity density at z ≳ 2. The luminosities of the galaxies responsible for the CIB shifts from combinations of "normal" and luminous infrared galaxies (LIRGs) at λ ≟ 160 ÎŒm, to LIRGs at 160 ≟ λ ≟ 500 ÎŒm, to finally LIRGs and ultra-luminous infrared galaxies at λ ≳ 500 ÎŒm. Stacking analyses were performed using SIMSTACK, a novel algorithm designed to account for possible biases in the stacked flux density due to clustering. It is made available to the public at www.astro.caltech.edu/~viero/viero_homepage/toolbox.html

    Obscured star formation in Lyα blobs at z = 3.1

    Get PDF
    We present results from the AzTEC/ASTE 1.1-mm imaging survey of 35 Lyα blobs (LABs) found in the SSA22 protocluster at z = 3.1. These 1.1-mm data reach an rms noise level of 0.7–1 mJy beam^(−1), making this the largest millimetre-wave survey of LABs to date. While one (or possibly two) out of 35 LABs might be detected at 3σ level, no significant (≄3.5σ) emission is found in any of individual 35 LABs. From this, we estimate 3σ upper limits on the far-infrared luminosity of L_FIR < 2 × 10^(12) L_⊙ (the dust temperature of 35 K and the emissivity index of 1.5 are assumed). Stacking analysis reveals that the 1.1-mm flux density averaged over the LABs is S_(1.1 mm) < 0.40 mJy (3σ), which places a constraint of LFIR < 4.5 × 10^(11) L_⊙. These data constrain the dust spectral energy distributions of the LABs more tightly than ever if their spectral indices at rest-frame wavelength of ≈ 240 Όm are similar to those found in (ultra-)luminous infrared galaxies at 0.2 < z < 0.3. Our results suggest that LABs on average have little ultraluminous obscured star formation, in contrast to a long-believed picture that LABs undergo an intense episode of dusty star formation activities with star formation rates of ∌10^3  M_⊙ yr^(−1). Observations with the Atacama Large Millimeter/submillimeter Array are needed to directly study the obscured part of star formation activity in the LABs
    • 

    corecore