24 research outputs found

    How heel oxygenation changes under pressure

    Get PDF
    The mechanism of heel pressure ulcers after hip surgery is not entirely understood. The purpose of this one-group, prospective, repeated-measures design study was to examine how the external pressure of the bed surface affects heel skin oxygen tension in adults on the first 3 days after hip surgery. Transcutaneous oxygen sensors were placed on the plantar surface of each foot, close to the heels. Measures were taken on room air and with an oxygen challenge with the heels (1) suspended above the bed surface (preload), (2) on the bed surface for 15 minutes (loading), and (3) again suspended above the bed surface for 15 minutes (unloading). Eighteen hip surgery patients (mean age 58.3±16.1 years) from two hospitals participated. When compared with preload on room air, both loading and unloading on all 3 days resulted in a reduction in heel oxygen tension bilaterally (p\u3c0.001). Heel oxygenation decreased without the anticipated hyperemic response, raising the question of whether this is a sign of increased pressure ulcer risk. Further work is needed to understand why this short period of external pressure results in decreased oxygenation and why oxygen tension does not return to baseline when pressure is removed

    Influence of particle size on appearance and in vitro efficacy of sunscreens

    Get PDF
    Nanotechnology applies to diverse sectors of science. In cosmetic area, investments have strengthened the idea that nanoproducts provide innumerable benefits to consumers. Extreme exposition to solar light can cause undesirable effects, thus, adding UV filters in cosmetic products are often used as prevention. Ethylhexyl methoxycinnamate and benzophenone-3 are UV filters widely used in sunscreen formulations, this UV filters absorb UVB and UVA radiation, respectively. In this study, sunscreen formulations were developed as nano and macroemulsion, but composed by the same raw material. Nanoemulsion was obtained by phase inversion temperature method (PIT). Physical and functional properties were evaluated by visual analysis, particle size distribution and by diffuse reflectance spectrophotometry. Achieved nanoemulsion showed bluish brightness aspect, less apparent consistency than macroemulsion, stability longer than 48 hours (22.0 ± 2.0 °C) and bimodal particle size distribution with average (mean) sizes around 10 nm (61%) and 4.5 µm (39%). Macroemulsion showed milky aspect, higher consistency than nanoemulsion, instability after 48 hours (22.0 ± 2.0 °C) and bimodal particle size distribution with average (mean) size around 202 nm (9%) and 10.4 µm (91%). Effectiveness profile of sunscreen formulations remained apparently similar, based on achieved results of in vitro SPF, UVA/UVB ratio and critical wavelength assays

    Characterising neovascularisation in fracture healing with laser Doppler and micro-CT scanning

    Get PDF
    Vascularity of the soft tissues around a bone fracture is critical for successful healing, particularly when the vessels in the medullary canal are ruptured. The objective of this work was to use laser Doppler and micro-computer tomography (micro-CT) scanning to characterise neovascularisation of the soft tissues surrounding the fracture during healing. Thirty-two Sprague–Dawley rats underwent mid-shaft osteotomy of the left femur, stabilised with a custom-designed external fixator. Five animals were killed at each of 2, 4 days, 1, 2, 4 and 6 weeks post-operatively. Femoral blood perfusion in the fractured and intact contralateral limbs was measured using laser Doppler scanning pre- and post-operatively and throughout the healing period. At sacrifice, the common iliac artery was cannulated and infused with silicone contrast agent. Micro-CT scans of the femur and adjacent soft tissues revealed vessel characteristics and distribution in relation to the fracture zone. Blood perfusion dropped immediately after surgery and then recovered to greater than the pre-operative level by proliferation of small vessels around the fracture zone. Multi-modal imaging allowed both longitudinal functional and detailed structural analysis of the neovascularisation process

    Accelerated surgery versus standard care in hip fracture (HIP ATTACK): an international, randomised, controlled trial

    Get PDF

    Coherently combined 16-channel multicore fiber laser system

    No full text
    We present a coherently combined laser amplifier with 16 channels from a multicore fiber in a proof-of-principle demonstration. Filled-aperture beam splitting and combination, together with temporal phasing, is realized in a compact and low-component-count setup. Combined average power of up to 70 W with 40 ps pulses is achieved with combination efficiencies around 80%

    Certification of Breadth-First Algorithms by Extraction

    Get PDF
    International audienceBy using pointers, breadth-first algorithms are very easy to implement efficiently in imperative languages. Implementing them with the same bounds on execution time in purely functional style can be challenging, as explained in Okasaki’s paper at ICFP 2000 that even restricts the problem to binary trees but considers numbering instead of just traversal. Okasaki’s solution is modular and factors out the problem of implementing queues (FIFOs) with worst-case constant time operations. We certify those FIFO-based breadth-first algorithms on binary trees by extracting them from fully specified Coq terms, given an axiomatic description of FIFOs. In addition, we axiomatically characterize the strict and total order on branches that captures the nature of breadth-first traversal and propose alternative characterizations of breadth-first traversal of forests. We also propose efficient certified implementations of FIFOs by extraction, either with pairs of lists (with amortized constant time operations) or triples of lazy lists (with worst-case constant time operations), thus getting from extraction certified breadth-first algorithms with the optimal bounds on execution time

    Analysis of fabrication techniques and material systems for kW fibers limited by TMI

    No full text
    Nonlinear effects and transverse mode instabilities (TMI) limit power scaling of single-mode fiber lasers. To overcome these limitations not only the fiber design but also laser relevant properties of the actively doped material itself need to be optimized. By being able to fabricate Yb-doped fibers for high power applications in-house, we have direct access to laser relevant material parameters. We fabricated fibers using three different co-doping systems, namely Yb:Al:P, Yb:Al:F, and Yb:Al:F:Ce. Afterwards we characterized and compared their laser relevant properties. All three co-doping systems showed nearly identical background losses and absorption cross-sections. In contrast, we found that the PD losses and the factor between PD losses@633nm and the laser wavelength range (1μm) to be significantly different. The retrieved characterization results were implemented into our simulations tool in order to improve the reliability of predictions. Finally, we characterized the fibers in kW-amplifier setups according to their power scaling limits, especially the TMI threshold. This cycle of fiber fabrication, characterization, and simulation enabled us to identify the impact of individual fiber parameters on the TMI threshold. We demonstrated that the impact of PD loss leads to a reductions of the TMI threshold for Yb:Al:F co-doping system of 13% to 23% (depending on the Yb-concentration). The PD loss for the two other systems was proved to be significantly lower and was found to have no impact on the TMI threshold. We experimentally proved that your in-house Yb:Al:P and Yb:Al:F:Ce fibers performed like PD-free fibers
    corecore