Edinburgh Research Explorer

The Tinker tool for graphical tactic development

Citation for published version:
Grov, G & Lin, Y 2017, 'The Tinker tool for graphical tactic development’, International Journal on Software
Tools for Technology Transfer, pp. 1-17. https://doi.org/10.1007/s10009-017-0452-7

Digital Object Identifier (DOI):
10.1007/s10009-017-0452-7

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
International Journal on Software Tools for Technology Transfer

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN (75 ACCESS

Download date: 11. May. 2020

https://doi.org/10.1007/s10009-017-0452-7
https://doi.org/10.1007/s10009-017-0452-7
https://www.research.ed.ac.uk/portal/en/publications/the-tinker-tool-for-graphical-tactic-development(d6207653-1987-4a0f-81ad-e919bf86cd0e).html

Int J Softw Tools Technol Transfer
DOI 10.1007/s10009-017-0452-7

@ CrossMark

TACAS 2016

The Tinker tool for graphical tactic development

Gudmund Grov! - Yuhui Lin!

© The Author(s) 2017. This article is an open access publication

Abstract PSGraph (Grov et al. in LPAR. Springer, Berlin,
pp 324-339, 2013) is a graphical language to support the
development and maintenance of proof tactics for interac-
tive theorem provers. By using labelled hierarchical graphs
this formalisation improves upon analysis and maintenance
found in traditional tactic languages. Tool support for
PSGraph is achieved by Tinker (Grov et al. in UITP 2014,
ENTCS, vol 167. Open Publishing Association, London,
pp 23-34, 2014; Lin et al. in Tools and algorithms for
the construction and analysis of systems. Springer, Berlin,
pp 573-579, 2016): a theorem prover-independent system,
which is connected to several different provers, with a graph-
ical user interface including novel features to develop and
debug proof tactics graphically. In this paper we provide a
detailed and formal account of PSGraph and show how the-
orem prover independence is achieved by Tinker. We then
show practical use of PSGraph and Tinker by developing
several proof patterns using the language and tool.

Keywords Interactive theorem proving - Tactic languages -
Development - Maintenance

This work has been supported by EPSRC Grants EP/J001058,
EP/K503915, EP/H023852 and EP/H024204. The first author is
supported by a SICSA Industrial Fellowship.

X' Gudmund Grov
G.Grov@hw.ac.uk

Yuhui Lin
Y.Lin@hw.ac.uk

1" Heriot-Watt University, Edinburgh, UK

Published online: 17 March 2017

1 Introduction

Most interactive theorem provers provide users with a tactic
language in which they can encode common proof strategies
in order to reduce user interaction. To encode proof strate-
gies, these languages typically provide: a set of functions,
called tactics, which reduces goals into smaller and sim-
pler sub-goals; and a set of combinators, called facticals,
which combines tactics in different ways. Tacticals typi-
cally explore higher-order features in the tactic languages,
which enable users to write short and concise strategies.
However, they can easily become hard to understand and
even harder to analyse and debug. When a tactic is used
to explain a proof strategy to a stakeholder, or maintained
and further developed by others than the original developer,
then it is crucial to have a representation that is intuitive'.
For example, consider the following proof strategy, called
simple_quantifier_tac, implemented using the tac-
tic language of the ProofPower system [4]:

REPEAT ((REPEAT strip_A)

(TRY

THEN

(all_d uncurry ORELSE
redundant_simple_3 ORELSE
simple_3_equation ORELSE
simple_3 A)) THEN
(all_V_uncurry ORELSE
redundant_simple_V ORELSE
simple_V_A ORELSE
simple_V_tac)))

(TRY

To fully grasp this strategy one needs to understand the
detailed semantics of the various tacticals, such as REPEAT
and ORELSE. For example, when does REPEAT terminate?
Does it require the given tactic to run at least once? Or will

I See, e.g. [29], which addresses industrial use of PSGraph.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-017-0452-7&domain=pdf

G. Grov, Y. Lin

1
can_simp()

c(forall)
c(conj)

is_simp_ex()
c(conj) Strip_A simp_ex simp_forall

\ any any
Y

Ie(conj)

can_simp()

lcan_simp()

Fig. 1 A PSGraph example

it succeed if it cannot run to begin with? We have found that
many mistakes are due to misunderstanding of such corner
cases [28]. There is also the issue of debugging. How can one
find the cause of a failure of the tactic? Or, possibly worse, the
cause of a success but with an unexpected result. Such bugs
are very hard to locate. Debugging is made even harder by
“defensive programming” through the TRY tactical, which
either applies a tactic or does nothing, as it is hard to see the
overall strategy. The most common solution to find bugs is to
manually break the tactic apart into sub-tactics and use, e.g.
writeln statements to see the proof state at various points
during evaluation.

To overcome these issues we have developed PSGraph,
a graphical proof strategy language [16], where tacticals
are replaced by directed, typed and hierarchical graphs. The
boxes contain tactics provided by the underlying prover or
nested graphs. These are connected by labelled wires. The
labels are called goal types and are predicates describing
expected properties of a goal”. Each goal becomes a special
goal node on the graph. These are passed between tactics
over the wires. To pass a goal over a wire, it has to satisfy the
wire’s goal type.

To illustrate, Fig. 1 shows a PSGraph representation of the
above tactic with two components abstracted out:

REPEAT ((REPEAT strip_A) THEN
(TRY simp_ex) THEN

(TRY simp_forall))

The first thing tonoticeisthat simple_quantifier_tac
repeatedly (REPEAT) applies three components in sequence
(using THEN). It is unlikely that the developer had such a
sequential ordering in mind; it is more likely a by-product
where the tactic language enforces an order (combined with
“defensive” programming using TRY).

The corresponding PSGraph draws them in parallel, which
is likely to be closer to the high-level strategy that the devel-
oper had in mind. The goal types on the wires are used to
explicitly direct the goals to the suitable tactic, while also

2 We use goal for both the top-level goal and any sub-goal.

@ Springer

being explicit about issues such as termination conditions
for loops. The advantage is that a user can read the overall
strategy directly from the graph, with the justification for the
choices (via goal types), without detailed knowledge of the
semantics of the tacticals used>. For this particular example,
if we know that strip_A strips conjunctions and simp_ex and
simp_forall eliminate existential and universal quantifiers,
then one can see directly from the graph what the strategy
does. We will return to the details of this strategy in the next
section, when describing the PSGraph language.

PSGraph is supported by a tool called Tinker [17], which is
connected to several theorem provers. In [30], we described a
new version of Tinker with novel GUI features for developing
and debugging PSGraphs. This paper is an extended version
of [30], with the following additional contributions:

— We give a formal account of PSGraph, including a formal
operational evaluation semantics.

— We encode several proof strategies in PSGraph to illus-
trate usability.

— We provide details of how theorem prover independence
is achieved by Tinker.

In Sect. 2 we describe the PSGraph language, while in Sect. 3
we show how it is used to prove conjectures, including the
formal evaluation semantics. In Sect. 4 we provide details of
the Tinker tool, while Sect. 5 describes how to develop and
debug proof strategies using the Tinker GUIL. In Sect. 6 we
show several proof strategies encoded in PSGraph, before we
discuss related work (Sect. 7) and conclude (Sect. 8).

2 The PSGraph language

An important part of PSGraph is the goal types. We first give
an exposition of goal types before discussing the PSGraph
language in general.

2.1 Goal types

A goal type is a predicate over a goal. Each wire of a PSGraph
is labelled by a goal type. The simplest goal types are predi-
cates on the goal terms: e.g. the PSGraph of Fig. 1 has a wire
with the goal type c(conj), which states that the conclusion
of the goal is a conjunction (i.e. of the shape “_ A _”).

The language used to express goal types was introduced
in [28]. It combines atomic goal types, which are relations
provided by the provers, with a Prolog-based language that
combines them. Following Prolog convention, constants start
with lower case (e.g. x, y, xs), and goal type variables start

3 The brain also finds diagrammatic representations more natural to
understand for such “process systems” [24].

The Tinker tool for graphical tactic development

with upper case (e.g. X,Y, Xs). Two common constants are
concl, which is the goal conclusion, and hyps, the list of
hypotheses. Terms used by the prover can also be encoded
in the goal types. In addition to goal type variables, there is
another notion of variables, which are prefixed by “?” (e.g.
7x, 7y, 7xs). They are treated as constants (or terms) in goal
types. We will return to them below.

A goal type is a non-empty list of (possibly negated) rela-
tions or defined goal types, written as
Cl(“Ols cey aVll)) ML) Cm(aOmv) akm)~
To declutter graphs and increase expressiveness, we can
introduce new definitions through a goal type schema. It has
the form
h(X1,...,X,) < Body
where Body is a list of relations. To illustrate, consider the
goal types of Fig. 1. Here, c(conj) and c(forall) are defined
using ¢(X):

c(X) < top_symbol(concl, X).
This definition uses the atomic goal type
top_symbol(S, T)

which states that symbol S is the top symbol of term 7. The
can_simp() goal type is defined in terms of the other goal

types:

can_simp() < c(conj).
can_simp() < c(forall).
can_simp() < is_simp_ex().

Here, the definitions of is_simp_ex() are omitted. Each clause
should be seen as a disjunction, meaning the goal type is
satisfied if either of them are satisfied. Finally, in order to
negate ci(ao1, ..., dan1) one writes !ci(api, ..., an1). This
is illustrated by !can_simp() in Fig. 1. We will see more
advanced goal types in Sect. 6.

2.2 Graphical proof strategies

Figure 2 shows the types of boxes that a PSGraph may con-
tain: an atomic tactic is a box that is labelled by a tactic of
the underlying theorem prover or an environment tactic (dis-
cussed below); a graph tactic is a box labelled by a named
nested graph, which is used to handle modularity; an identity
tactic does not change the goal and is used to merge and split
wires; a goal node contains an open goal to be proven. This

Voo Vo v v
| T(Args) | | T(Args) “ % (? @

graph tactic identity tactic goal breakpoint

Fig. 2 Different types of boxes used in a PSGraph

can only be added or changed by tactic application; break-
points are used to control evaluation, which we return to in
Sect. 5.

At a given time during the proof of a conjecture using
PSGraph, there are one or more open goals that has to be
proven on the graph. A theorem prover will keep track of
these in a proof state. A tactic application will be applied to
one goal of the proof state and will replace this goal with new
generated goals, if any.

A goal node in a graph will be labelled by a goal of the
proof state. In addition, it contains an environment. The envi-
ronment is a map from a named variable, which is prefixed by
“?”, to a term, another named entity such as a named lemma
or alist of them. It is used for communication between tactics,
and to express global constraints in the goal types.

An identity box does not change the goal it evaluates. It
is used to split and merge the paths a goal can take. Fig-
ure 1 illustrates both these features, where an identity box is
used together with the goal type to send a goal to the correct
destination (split) and then to merge the outputs again.

Modularity and scalability are achieved by nesting sub-
graphs inside graph tactics. PSGraph keeps track of all
named child graphs, and a graph tactic box in a graph is
labelled by such a name together with arguments. The argu-
ments have to be variables and are used to ensure local
scoping. For example, consider a graph tactic

h(7x, 7).

This will introduce a local scope in the graph nested by 4,
such that only ?x and ?y will be kept from the environment
of a goal node entering this nested graph. On exit, only 7x
and ?y will be changed from the environment of the goal that
entered the nested graph.

Figure 1 contains two graph tactics, simp_ex and
simp_forall. Figure 3 shows the graph nested by simp_ex,
which corresponds to the (sub-)tactic:

all_3d uncurry ORELSE
redundant_simple_3 ORELSE
simple_3_equation ORELSE
simple_3_A

The individual tactics work as follows: all_3_uncurry
changes paired quantifiers to uncurried versions;
redundant_simple_3removes the quantified variables

@ Springer

G. Grov, Y. Lin

is_simp_ex()

has_redundant_ex ()
is_ex_conj
(7 Acori() is_paired_ex()

has_one_point_struct ()

redundant_simple_3

any

any any

\l«'ﬁ/y
i

any

Fig. 3 A PSGraph example: simp_ex graph tactic

if they are not used in the body; simple_3_A distribute
quantifiers over A; simple_3_equation simplifies goals
with the one point rule [40] (see Sect. 6). These are attempted
in the given order until one of the tactics succeeds. As simp_ex
is prefixed by TRY, the tactic will do nothing if all the tactics
fail. simp_forall is omitted as its encoding is similar.

In the PSGraph version of this code, shown in Fig. 3, the
order does not matter: a goal will be applied to the tactic
where the incoming goal type succeeds. These are therefore
drawn in parallel. If there are multiple goal types that succeed
then all of them are tried. For speed and maintainability, it is
important to have as non-deterministic strategies as possible.
One thus needs to take care when developing goal types. Note
that we ignore the overall TRY tactical as the goal type on
the input wire should ensure that a tactic is applicable.

Figure 3 uses the same tactics as the code. From PSGraph’s
perspective, these tactics are the atoms, as they becomes
“black boxes” that cannot be split further. We therefore call
them atomic tactics. A box with an atomic tactic is labelled
by the tactic name and optional arguments which we return to
below. Figure 1 also contains a single tactic called strip_A;
it will break a conjunction into a new goal for each of the
conjuncts. As the feedback-loop label shows, this is applied
as long as the conclusion is a conjunction (goal type c(conj)).
The overall strategy is applied as long as one tactic is appli-
cable, identified by the can_simp() goal type.

The other class of atomic tactics is the environment tactics.
These are tactics that only update the environment in a goal
node. This is the only way to change an environment. An
environment tactic has a name that starts with “ENV_". To
illustrate,

ENV_bind(t, 7v)

will bind variable ?v to ¢ in the environment. Once bound, ?v
can be used in a goal type:

top_symbol(3, M)

@ Springer

It can also be used by an atomic tactic. For example,
rule_tac(exI,).

will instantiate a witness with the value of ?v.

3 Proving with PSGraph

A PSGraph may be open [14], in that a wire may not have a
source or not have a destination. A wire without a source is
an input for the graph, while a wire without a destination is
an output of the graph. To illustrate, consider a graph G with
two wires without a source, labelled by goal types /1 and I»,
and two wires without a destination, labelled by goal types

01 and O;:
1 l /12

In order to apply such a PSGraph to (possibly partially) prove
a conjecture, the conjecture has to be initialised first in the
proof state of the underlying theorem prover. The goal then
has to be wrapped in a goal node:

Definition 1 (Goal) A goal node, represented by the type
Goal, contains a goal name of the actual goal in the proof
state and an environment env.

A goal node can then be added to one of the input wires.
In order to add the goal to an input, it must satisfy the goal
type. That is, if it succeeds for /; then it can be added to this
wire. If it succeeds for both I; and I, then both of them are
tried separately. Once added, this goal, or any goals generated
from subsequent tactic applications, will then “flow” through
the graph until all the goals are on the output wires, i.e. O
or O,. At this point evaluation has terminated:

Definition 2 (Termination (normal mode)) A graph has fer-
minated, if for all goals g of the graph, the destination of the
output wire for g is either the graph output or another goal.

It follows by induction over the number of goals present that
all goals must be on the output wires on termination.

We can reduce the discussion of evaluation to a single step
over one of the boxes of the graph. A full graph is evaluated
by repeating such steps until termination is reached. This
process uses and updates two components: the PSGraph PG,
which keeps track of the state of the strategy; and a proof state
P, keeping track of the goals and the necessary bookkeeping
required by the theorem prover. The proof state is handled

The Tinker tool for graphical tactic development

PGV hio: H1 PGV him: Hi
PG V¢ hpo: Hy, PGF hpi: Hy
<PG7 P,T(Args),g) ‘U’T <Pl?hs>
hsz[hlo,...,hno,...,hno,...,hnk]

G
G
T(Args)
— .
o),
Hi| ' Hx

Hi : Hn
H : @ n
Fig. 4 Schematic rewrite rule for atomic/graph tactics

by the underlying prover and thus will vary between provers
as detailed in § 4.

At the graph level, evaluation works by rewriting. A
rewrite rule is written as L < R, which, when applied,
will replace a sub-graph L with R. The rewriting uses rich
pattern graphs [21,22], which is used to express repetition
using ellipses (- - -). A formal account of pattern graphs can
be found [21,22] and is beyond the scope of this paper. To
increase readability, we omit some of the goal types where
they are not used, but note that each wire will have a label
even if not shown.

Figure 4 illustrates the rewrite rule schema to evaluate
an atomic or graph tactic. Note that when there are no argu-
ments, then we can write T instead of 7'(). The rule has several
conditions, written above the line. Conditions of the form

PGF g G

express that a goal g satisfies goal type G, given the PSGraph
PG. The other relation

(PG, P, T(Args), g) Ur (P', gs)

is the semantics to evaluate a goal by tactic 7', producing a
new proof state P’ and new goals gs. A formal account of
this relation is given in § 3.1.

The steps for an atomic tactic are:

1. Consume g from the graph.

2. Apply T'(Args) to g to obtain a set of results (lists of goals
paired with a proof state) from the application of tactic
T with the given arguments Args.

3. Add all valid combination of the resulting goals to the
output wires. These are combined with the new proof
state.

Fig. 5 Evaluation of identity tactics and breakpoints

A special case of this tactic is when 7" only makes changes
to the environment; in this case, the proof state will remain
unchanged.

For a graph tactic, the steps are:

1. Look up the graph G that T refers to

2. Consume g from the graph, and create g’ where the envi-
ronment is constrained to the variables in Args.

3. Add g’ toall the input wires of G where g’ satisfies the goal
type (one branch for each), and evaluate until termination.
The resulting goals should now be on the output wires.

4. Add all valid combinations of the resulting goals to the
output wires of 7. When adding these, the environment
should be replaced by the environment of g, updated by
any changes to variables in Args.

In addition to atomic and graph tactics, a graph can also
contain identity tactics and breakpoints. These have no side
effects on the proof state and are shown as the rewrite ruleset
Rin Fig. 5. A goal g is simply “moved over” an identity box
or breakpoint, as long as the goal type of the target wire is
satisfied. A breakpoint is only allowed to have one input and
one output wire, labelled by the same goal type. The final type
of node is a goal node, and it is not allowed to “swap” two
adjacent goal nodes, albeit this may be added in the future to
implement heuristic-based evaluation strategies.

A PSGraph is evaluated (to completion) by applying the
rewrite rules outlined above until none are applicable. If the
termination condition holds at that point, then it has success-
fully evaluated; if not, evaluation has failed. In § 5 we will
discuss a “debugging” mode with a slightly different seman-
tics.

3.1 A formal account of evaluation

To give a formal account of PSGraph, we use a VDM-based
mathematical notation [5]. In particular, note that: P-set is
the set of all subsets of P; T* is a sequence of type T', where
[1 is the empty sequence and cons(x, xs) adds element x to

@ Springer

G. Grov, Y. Lin

sequence xs; elems S is the (set of) elements of sequence
S; dom R is the domain of relation R; domain subtraction is
represented by <, while its dual, domain restriction is written
<.

We do not provide the operational semantics for a goal
type (PG - g: G) as this is given in [28], where the goal type
language was introduced.

We use the type Graph to describe an actual graph of
a PSGraph, which is an instance of a string diagram [14].
We write G[L < R] for the application of the rewrite rule
L — R to graph G. This will return a set of new graphs.
We write G; < g G for applying a rule in the ruleset R to
rewrite G into G». Rewriting is achieved by matching L with
the graphs we are rewriting. Then this matching sub-graph
is removed from the graph and replaced by R.

We use two combinators to compose graphs:

Definition 3 (THEN g combinator) G THENG G, connects
all the outputs of G; to all inputs of G, of the same type.
Diagrammatically this can be seen as follows:

THENg

THENG is only defined when all outputs/inputs of G1/ G»
are connected.

Horizontal composition is a result of putting the two
graphs next to each other:

Definition 4 (® combinator) G| ® G, is the horizontal com-
binator which puts two graphs side by side:

{)

Details of the semantics underpinning both the rewriting and
composition are beyond the scope of this paper, and we refer
to [14] for details.

We can now define a PSGraph:

Definition 5 (PSGraph) APSGraph PG contains the follow-
ing fields

graph(PG): Graph
current(PG): Graph
children(PG): Name BN Graph

@ Springer

graph is the main (top-level) graph, current is the focus for
evaluation, while children is amap from aname to a graph and
contains the child nested by the named graph tactic. PG[f: =
e] is the PSGraph PG with field f replaced by e.

The evaluation relation |} is a relation over two pairs of
a “before” PSGraph PG and proof state P, and an “after”
PSGraph PG’ and proof state P':

(PG, P) || (PG, P')
An alternative is to also provide a goal g (which exists in the

proof state). This case is achieved by the | relation, which
is defined in terms of the |7, relation:

(PG, P, graph(PG),) V5 (PG, P')
(PG, P,g) Ig (PG, P')

Figure 6 gives the evaluation semantics. The |, relation
(EVALGRAPH) evaluates a goal g on a given graph G by first
adding the goal to the input (ADDINPUT) and then sets the
current field to this graph. It then evaluates the graph until
termination (Definition 2) using |}*: the reflexive transitive
closure of ||. EVALGOAL ({};) is a simpler version of EVAL-
GRAPH, which uses the current graph instead of a given graph,
and is used to initialise a PSGraph with a goal. It is straight-
forward to extend the semantics to support multiple input
goals as well.

The | -relation has two cases: REWRITE represents the
steps handled by rewriting only with the ruleset R, given
in Fig. 5. STEP relates to a step of an atomic or a graph tactic,
as illustrated by the rule schema in Fig. 4. The generation
of the left-hand side L of the rewrite is handled by matching
with the current graph of the PSGraph. This will produce
all possible matches, i.e. all possible goal nodes that can be
evaluated. This is denoted by /hs:

lhs € Graph LN Graph-set.

The right-hand side R is generated by the |/ g relation, and
the current graph is updated by rewriting L to R. As all goal
nodes are unique, it is only one way to apply this rule (see
Claim 3).

Ug is captured by RIGHT, and R is generated by first
removing the goal g by rewriting and then applying the tactic
T (Args) using the |7 relation to get the new goals. From the
output goal types, a valid goal type partition is created from
the output goals:

Definition 6 (Ordered partition [16]) For a sequence L, we
say a sequence of sequences L’ is an ordered partition of L if
all the sequences are distinct, L contains the same elements
as L and each [€ elemsL’ is obtained by deleting zero or
more elements of L (i.e. the order of L is preserved).

The Tinker tool for graphical tactic development

(PG,G,gs) 41 G’
(PG',P) 4" (PG", P")
G’ = current(PG"")
Terminated(G")

EVALGRAPH T~
(PG,P,G,gs) U&aq (PG

PG+ current(PG) — g cur’

PG" = PG[current := cur’]

REWRITE STEP

EvALGoOAL

Le lhs(current(PG))
G’ € current(psgraph)[L — R]

(PG, current(PQG), empty_goallname := g]) 41 G’
(PGlcurrent := G'], P) }* (PG",P’)
G’ = current(PG"") Terminated(G")
(PG, P,g) Y5 (P',G")

(PG,P,L) {r (P',R)
PG’ = PG[current := G']

(PG, P) || (PG', P)

Ry = L[@ s lc]

(PG, P, T(Args),g) 4 (P’, gs)
[p1,...,pn] € part([H1, ..., Hxn], gs)
Ry = gnds(p1, H1) @ - - - @ gnds(p1, H1)

(PG, P) | (PG, P")

T € dom children(PG) er = elems Args g g(env)
ga = glenv := elems Args < g(env)]
(PG, P, children(PG)(T), ga) V& (P, G)

newg(goal) := goallenv := e, U (elems Args < goal(env)]

R =Ry THENG R = Sy n
- \ THENG R . g3 = [netwg(so). .., newo(ou)
<PG’ P7 L> ‘U’R <P ’R> <PG7 P,T(AT‘gS),g> ‘U’T <P ,gS)
T ¢ Env elems Args N Vars C dom env(g)
(P',g1,---,9n]) € eval(T, [Argslenv(g), P name(g)) T € Env e € eval-env(T, Args, env(g))
gs = {g[name = g1l,...,g[name := gn] gs = [g[env = e'ﬂ
AToMIC Env

<PG7 PvT(ATgS)>g> U‘T <Plvgs>

GTy, ...

ADDINPUT

) GTi7 ceey GTn] = inputs(G)
IG = gnds([], GT1) ® - -- ® gnds([g], GT:) ® - - - ® gnds([], GTr)

<PG’ PvT(ATgS)7g> ‘U’T <P7g3>

PG\ g:GT;
G’ =IG THENg G

(PG,G,g) 41 G

Fig. 6 Evaluation semantics of PSGraph

Definition 7 (Goal type partition [16]) For a PSGraph PG, a
sequence of goal types [G1, . .., G,] and a sequence of goals
[g1, -, 8ml, a goal type partition is an ordered partition:

P= [[gl’ gi/7"’]’ [gj’ gj”"‘]?"']
such that for each g, in the k-th list in P it is the case that
PG + g: Gy.

In general, there may be more than one way to partition a list
of goals. Given a list of goal types and a list of goals, let part
be the set of all possible ways to goal type partition these
goals:

part € Goal type* x Goal* — P-set

The set of partitions is empty precisely when there is a goal
in L that is not of type Gy for any k.

Example 1 To illustrate, consider a sequence of goals
[g1, g2, g3] and a sequence of goal types [G,, Gp], such that

PGt g1:G, PGFg:Gp
PG¥F g:G, PGt g2:Gyp
PGFg3:G, PGF g3:Gyp

For this example, part([G,, Gpl, (g1, &2, g3]) returns a set of
two partitions

{[[gu g3l [g21]. [[g11. [g2. g3]]}

since g1 only satisfies Gy, g only satisfies Gy, and g3 satisfies
both G, and Gp,.

Each partition is turned into a graph by gnds:

gnds([], G) :

= lG G
gnds(cons(g, gs), G) : = gnds(gs, G) THEN¢ @
G

These are then horizontally composed and then sequen-
tially composed with the left-hand side (with the input goal
removed). Evaluation of an atomic box (ATOMIC) is achieved
(U r relation) by a function eval that executes the function.
This has to be provided by the underlying prover. We return
to how this is achieved in § 4, when discussing the Tinker
tool.

Let Vars be the set of all variables (which are prefixed by
“?”). All variables in Args must be found in the environment
of the goal. To apply a tactic with eval, the variables are first
instantiated by the values in the environment:

@ Springer

G. Grov, Y. Lin

[[1]e:=1]
[cons(?v, xs)]E : = cons(E(?v), [xs]k)
[cons(x, xs)] £ : = cons(x, [xs]g)

The tactic is then only given the named goal, and eval returns
a set of proof states paired with a set of goal names. Each goal
name is turned into a goal node with the same environment
as the goal node it was generated from.

Example 2 To ilustrate evaluation of an atomic tactic, con-
sider a pair of a PSGraph PG and proof state P, such that the
current graph of PG is:

&

To evaluate goal g using tactic T, the new proof states and
sub-goals are first computed by

eval(T, [Jem(g). P, name(g)).

Assume that this tactic application returns the following set:

[(Pr L2182, 831). (P2 L)), (P3. Lgs])]

This means that there are three possible results when applying
T to g. Further assume that g1, g2 and g3 have the properties
from example 1 and that

PG ¥ g4: G,
PG ¥ g5: G,

PG F g4: Gy
PG ¥ g5: Gp.

For each element of the set, the goal type partition for the new
sub-goals is first computed. This is computed with respect to
the output wires of 7', which are labelled by goal types G,
and Gp, forming the sequence [G,, Gp]:

— For the first element, the goal type partition is given in
example 1.

— For the second element, the singleton set {[[], [g4]]] is
returned.

— For the third and final element, the empty set {} is
returned. This means that a goal cannot be added to any
of the output wires. As a result, this element is discarded.

One branch of the search space is then generated for each
partition. For each of these, the current graph is updated by

@ Springer

consuming the input goal g and adding the goals to the out-
put wires corresponding to the goal type partition. This will
create the following three graphs, paired with their corre-
sponding proof state:

Vo e
(P) (e Gb) (resil)
G‘ Gl) ? G
G G,, G

Note that the rightmost graph has terminated as the goal node
is on the output wire.

Environment tactics are used to change the environments;
this class of tactics is represented by the set Env, which in
practise is any atomic tactic starting with “ENV_". These are
in most cases theorem prover specific and evaluated by the
eval_env function, which will return a set of new environ-
ments.

For a graph tactic (GRAPH), the environment is first con-
strained to the given arguments; then the child graph is
evaluated by |7;;. On termination, the output goals of the
child are returned, once the environment has been updated
as previously discussed. ADDINPUT is used to add an input
goal to the graph. It follows the same approach as RIGHT by
using the two combinators and the gnds function.

We state four key properties, without proof, which follows
directly from the semantics:

Claim 1 A goal can only be generated by a tactic applica-
tion.

Claim 2 No goals are “lost”, meaning that if a tactic gen-
erates a goal then it will appear on the graph and remain
there until it has been discharged by a tactic.

Claim 3 No goals are duplicated, i.e. there is only a single
instance of an open goal in the graph.

Claim 4 Evaluation will only change the current graph of a
PSGraph.

4 The Tinker tool*

The Tinker tool [17,30] implements PSGraph with support
for the Isabelle [35], ProofPower [4] and Rodin [1] theo-
rem provers. Tinker consists of two parts: the CORE and the
GUP. The rightmost shaded box of Fig. 7 is the CORE, while

4 The Tinker source code is available from [18].

> The integration with Rodin [25] has a third part, which we will briefly
outline in § 4.

The Tinker tool for graphical tactic development

7? — Rodin_plugin JSON

(i) i| Rodin_Tinker L
e : { N Tink
S8 : er core
T @l
N~—_|:P f [Quantomatic
P « PP_Tinker 7

{Poly/ML}

: PROVER

& Tinker GUI

{Scala}

Fig. 7 Architecture of Tinker

the bottom-left box is the GUI. The CORE implements the
main functions of Tinker, using the Quantomatic diagram-
matic proof assistant to represent and rewrite graphs [23].

In § 5 we give details of the GUI, focusing on user fea-
tures for working with the system. In the remainder of this
section we will discuss the CORE. Details of how it is imple-
mented and interacts with Quantomatic are described in [17].
Here, we will focus on how theorem proving independence is
achieved and how the different provers have been integrated.
For a more tutorial-like exposition of how to go about con-
necting a new prover, we refer to [28].

A theorem prover is connected by providing an implemen-
tation of an ML signature called PROVER. Figure 7 shows
three implementations of this signature using three differ-
ent ML structures: Isa_Tinker (Isabelle), PP_Tinker
(ProofPower) and Rodin_Tinker (Rodin).

Proof states and goals The crucial part of a prover inte-
gration is the representation of proof states and goals. While
Tinker uses the underlying prover’s representation, these dif-
fer between the various provers. The user therefore has to
implement the PROVER signature to represent these, possibly
augmented with some additional bookkeeping information.
These act as a bridge between Tinker and the theorem prover.
The proof state must keep track of the goals that are “active”
in the PSGraph, while from Tinker’s point of view a goal is
just a named element that can be used to interact with the
proof state (e.g. to apply it to a tactic).

In Isabelle, a proof state is a theorem®. To prove a conjec-
ture C, an initial proof state

C=~C

is created. Tactics are then applied to the antecedent of the
implication. For example, a tactic that reduces C to the goals
C1 and C; will generate the theorem

C, = C, = C. (1

6 Isabelle has a sub-goal package, used, e.g. by Eisbach [31], which we
plan to use in the future.

This process continues until all goals are proven and the user
is left with the original conjecture C, for which there is now
a proof. In Isabelle, a goal does not have a name; instead one
provides the position of the goal when applying a tactic to
it. For example, to apply a tactic to C; of (1), 1 is given as
argument, while for C,, 2 is given. In our proof state data
structure we therefore augment the theorem with a map from
names used in Tinker to the goal number they correspond to.
A goal node will then use this name.

In ProofPower, the proof state is represented by an element
of type GOAL_STATE. Here, each goal is named so we just
use this name for the goal.

Rodin [1] is Eclipse-based and implemented in Java. As
shown in Fig. 7, the Rodin integration consists of two com-
ponents: a Tinker plugin for Rodin and an implementation
of the PROVER signature by the Rodin_Tinker struc-
ture. These communicates over a JSON protocol. Here, the
main functionality is in the plugin and the only thing done by
the Rodin_Tinker structure is to handle communication
between the Rodin plugin and Tinker CORE. In Rodin, the
proof state is handled by the Rodin Proof Obligation Man-
ager (POM).

Executing a tactic In the formal semantics of Fig. 6, atomic
tactics of the prover are evaluated by

eval(T, Args', P, gname)

where T is the tactic name; Args’ are the arguments with
all variables instantiated (by [-]g); P is the proof state; and
gname is the name of the goal. This function should return a
set (implemented as a lazy sequence) of pairs of a new proof
state and a sequence of new goal names.

A key challenge when connecting a theorem prover to
Tinker is that its internal representation of tactics has to be
ported to work on the representation of proof states and goals
from the PROVER signature.

Tactics without arguments (e.g. those in Fig. 3) can be
handled by a generic “wrapper” function that turns the under-
lying prover representation to the one required by Tinker. In
Isabelle, a tactic takes as argument the position of the goal’.
“The wrapper” looks up the position from the name, then
generates a new fresh name for each new goal and updates
the map. ProofPower keeps track of the goals in a stack, and a
tactic is applied to the goal that is on top of the stack. Thus, to
apply a given tactic to a given goal, “the wrapper” first moves
the goal to the top of the stack and then applies the tactic. In
Rodin, the plugin is responsible for calling the correct tactic
in the POM and sends the updated proof status back to the
CORE.

7 Many Isabelle tactics also expect a proof context which we for sim-
plicity ignore here.

@ Springer

G. Grov, Y. Lin

|
File Edit Debug Record

Library

v [demo
demo.psgraph I
demo_library.psgraph

ESRIFAFC IR

hiddenCase.psgraph

1
> [rodin

simple_taut_tac_V6.psgraph

structure_proof.psgraph

b3

hyp_embeds0

|
|
|
|
|
| V3 1] hyp_embeds()
pwi_forall_conj || c(forall) [ENV_bind(concl, 7q : var)
one_point.psgraph preview | \@/
- | c(forall) ripplédo .
one_point_pattern Q r I " 7 measur:n::::.’.,.wg)
ahy | Ifemnsatlon l \‘{\1
I | I ripple_step
| -m
y thyp_embeds(
/\1s_one_pninl.. | 4 vo
o | sledgehammer
s_one/ poin... il |
one_point(Zk) |
|

|
|
e |
j tinker_library I. ____________________ | fertilisation s =

|
I | rippling—pwf
] Tactic inspector |
| rippling

|
|
|
|
—= |
| - E f_forall_imp |
| rippled | |
| 50 Nrein |
fertilisation |
: hyp_bek_resh pyn sypsto : |
w S TN (e
v3 . 2 &
[XoN) Tinker - tactic editor |
| wealk_fert |
! o] 05 .
1
any0 actic rule := |fn [Isa_Tinker. =
| I tactic rul [Isa_Tinker.Thm thm] =>
i » , 1 ‘7 fn _ => rtac thm; I
————————— [
: Node Information | 6—_6 Tinker_- goal type editor |
|
| Node :v2 | Submit |
| rippled() :- hyp_bck_res().
| A
| Type : Graph tactic | rippled() :- hyp_subst(). 8 |
match_lr (X,Y,Z) :- sub_term(Y, X). |
I Name: fertlisation () limatch_lr (X,,2) :- sub_term(z, X). I
| | can_ripple(X) :- has_wrules(X), 'hyp_bck_ I
res().
|[{Bnchiype IOk Ihyp_embeds() := member_of (hyps,X) ,embeds (|
| I|x, concl) . |
| 4+ . Q &® ||hyp_bck_res() :- member_of (hyps,X),sub_te
, J.rm(x,concl). |
__________ b ot ke o b o £ o) i e e e

1: Library panel 2: Hierarchy utilities

3: Drawing and evaluation controls
4: Graph panel

Fig. 8 Tinker GUI and its layout

If atactic has arguments, then a user must manually imple-
ment a version of this tactic for Tinker where the arguments
are represented as a list of a given type (called arg_data).
This is a deep embedding of the supported types®. Except for
this, it is handled the same way as a tactic without arguments.

Environment tactics Environment tactics only update the
environment of a goal node. In the semantics of Fig. 6
the execution of an environment tactic is achieved by the
eval_env(T, Args, env) function. It will return a set of new
environments. These are handled in a similar way as atomic
tactics, albeit this is simpler as there is not a proof state to
update.

5 Developing and debugging with the GUI°

The Tinker GUI provides users with an additional interface to
support the development and debugging of proof strategies;
for all other tasks the existing GUI of the underlying theorem

prover is used.

5.1 Developing proof strategies

Figure 8 shows the Tinker GUI and its layout. Here, a user
can draw a graph from the Graph panel by selecting the type

8 See [28] for a detailed example.

9 Example screen casts can be found at [18].

@ Springer

5: Hierarchical node inspector
6: Information panel

7:Tactic editor
8: Goal type editor

of node from the Drawing and evaluation controls panel.
Tactics are connected by dragging a line between them. When
selecting an entity, the details are displayed in the Information
panel, and they can be edited by double clicking!?. It supports
all the nodes of Fig. 2, albeit a user cannot draw a goal as
this has to be created by the theorem prover.

Tinker allows “boxing” of sub-graphs into hierarchies,
by a simple mouse click. Tinker also supports a range of
features to work with hierarchies. In the Hierarchical node
inspector, users can preview the internal structure of an hier-
archical node. In the Hierarchy utilities panel (top right of
Fig. 8), the hierarchical path of the current graph under edit is
shown, as well as a tree view of the hierarchical structure of a
PSGraph. Itis also easy to move between and edit hierarchical
nodes.

Graphical libraries Reuse of PSGraphs is supported by a
library. This feature is provided in the Library panel. The
items in the library are PSGraphs and stored in a special
purpose folder. A new PSGraph can be added to the library
by copying the relevant file to this directory. When importing
an item from the library to the current PSGraph, Tinker will
copy it to the graph that the user is currently editing and
merge all the required information, such as defined tactics
and goal types (see below).

10 More details of running the tool is available from the user manual

[8].

The Tinker tool for graphical tactic development

Defining new tactics Using the “wrapper” function described
in § 4, a label of an atomic tactic is just treated as ML code
and executed as a tactic in the CORE. Some tactics can be
very long, or, e.g. use higher-order features that one would
like to hide. While one can define shorthand notation of these
in the prover, we have also developed a tactic editor in the
GUI, which is shown in Fig. 8 (centre right ((7)). It expects
the syntax

tactic (name) := (ML code);

An atomic tactic box in the graph that is labelled by (name)
will then apply (ML code). To illustrate, Isabelle supports
higher-order resolution through a tactic called rtac, which
in an Isabelle proof script (called Isabelle/Isar [39]) is
written as rule. This tactic takes a theorem to resolve
with as an argument. In the tactic editor, we can define
this as:

[Isa_Tinker.Thm thm]
=> rtac thm;

tactic rule := fn
=> f].’l_

Note that: £n is ML syntax for lambda abstraction in
Isabelle; Isa_Tinker.Thmis a constructor of the
arg_data type mentioned in § 4; while the last argument
(fn _) refers to the proof context of Isabelle, which can be
ignored for this tactic.

Defining new goal types Tinker requires that a set of aromic
goal types are provided by the underlying prover and made
available to the CORE. The GUI provides a goal type editor,
as shown in Fig. 8 (right), which implements the Prolog-
inspired goal type language described in § 2.1. To illustrate,
assume that the atomic goal type top_symbol (S, T), dis-
cussed in § 2.1, is provided. We can then define ¢ (X) in the
editor as:

c(X) :- top_symbol (X,concl).

As is common in Prolog, we write “: =" for “<", and
conj is Isabelle’s ASCII representation of conjunction.

Recording and replaying Tinker provides features to export
PSGraphs and record proofs. A PSGraph can be exported
to the SVG format. The recording feature can be switched
on/off to start/pause the recording of changes made to a
graph. These changes could have been made by the user or
by the tool during evaluation. Once completed, such record-
ing can be exported to a lightweight web application (written
using HTML, CSS and JavaScript) via a generated JSON file.
Examples of recordings can be found at [18].

5.2 Debugging proof strategies

One can think of three modes of applying a PSGraph:

1. In an automatic (or normal) mode it is treated as a
black box, and all you see is the resulting goals from
applying it. This mode is the same as applying a
normal tactic/method from the prover. In Isabelle/Isar,
a PSGraph (psgraph) is executed by the command
apply tinker({psgraph)); in ProofPower it is
achieved by the command apply_ps (psgraph) while

the button is available for Rodin.

2. In an interactive mode, the steps of evaluation are
inspected in the GUI, achieved by the commands apply
itinker (Isabelle) and apply_ps_ i (ProofPower).

3. In a debugging mode, which combines these modes as
detailed below.

In the interactive mode, users can: (1) select which goal to
apply; (2) choose between stepping into and stepping over the
evaluation of graph tactics; (3) apply and complete the current
graph tactic; (4) backtrack to the next branch in the search
space; (5) apply and finish the whole proof strategy; (6) insert
a breakpoint and evaluate a graph automatically until the
breakpoint is reached by a goal. These options are illustrated
in Drawing and evaluations controls panel of Fig. 8. The
graph displayed there also shows a breakpoint.

Breakpoints A novel feature of Tinker is the support for
breakpoints, which can be added/removed from wires by a
simple mouse click. This was introduced in [28]. In presence
of breakpoints in the debugging mode, we introduce a new
definition of termination, with the difference from Defini-
tion 2 underlined:

Definition 8 (7ermination (debug mode)) A graph has fer-
minated, if for all goals g of the graph, the destination of the
output wire of g is either the graph output, a breakpoint node,
or another goal.

The semantics is updated to handle this mode by removing
the rewrite rule for breakpoints from R (see Fig. 5).

In case of failure, the debugging mode can be used to iden-
tify and rectify errors that have caused evaluation to fail, and
breakpoints are used to support this and act as an interface
between the automatic and interactive mode. When debug-
ging a large proof strategy (see [29]), one may have an idea
of where the problem is and would like to avoid having to
go through all steps until that point is reached. This can be
achieved by adding a breakpoint node at the point where
one would like to start stepping through the graph. When a
graph terminates in debug mode, it stops instead of report-

@ Springer

G. Grov, Y. Lin

ing success/failure. A user can then manually step through
evaluation using the GUI features described above.

Logging To support debugging, an evaluation log, which
shows the details of the current proof status, can be displayed.
The log uses tags that can be used to filter the log to tags
of interest. Tags include properties about: goals, goal types,
tactics, environments (of goals) and failure information. An
example of a log is

[k: E_Trm(Domain B.0)]

ENV_DATA

where ENV_DATA is a tag for the environment of the goal
which is currently evaluated. We will see practical use of the
logging mechanism in § 6.

6 Proof patterns as PSGraphs

To illustrate use of PSGraph and Tinker we encode three
proof patterns of increasing complexity.

6.1 “Disjunctions to the top”

The first pattern we address is from a proof discussed in [15]
of a heap case study in VDM [20, Chapter 7]. The problem is
a limited form of normalising into a disjunctive normal form
(DNF), where we would like to turn a goal of the shape

dxp ..., - AVB)AC
into the shape:
(Fxy oo 3x, AANC)V (Exp - -3, - BAO).

The strategy needs to first distribute the disjunction over a
conjunction, then over all the existential quantifiers. Isabelle
has two rewrite rules that can be applied to achieve this by
rewriting. The first is conj_disj_distribR:

(PVOARS (PAR)V(OAR)

It distributes a disjunction over a conjunction. The other is
ex_disj_distrib:

dAx-PvQ<& (3x-P)v (3x-0)

which distributes a disjunction over an existential.

Figure 9 shows a PSGraph that implements a strategy to
achieve this using these two theorems. It applies the Isabelle
substitution tactic (subst_tac) in both cases. This tactic takes
the rewrite rule to apply as an argument. It first distributes
over the conjunction; then it repeatedly distributes over an
existential until the disjunction is at the top, identified by

@ Springer

need_move_disj_up()

| subst_tac(conj_disj_distribR) |

any le(disj)
v /
| subst_tac(ex_disj_distrib) |
c(disj)
v

Fig. 9 Dealing with disjunctions

the c(disj) goal type; its negation labels the feedback loop
to indicate that it should continue. A feature of the strat-
egy (and PSGraph) is that it is explicit about the termination
condition of the loop. The most interesting thing is to iden-
tify when this strategy is applicable, represented by the
need_move_disj_up() goal type of the input wire:

need_move_disj_up() < into_all_ex(concl, X),
or_and(X).
into_all_ex(X,Y) < into_ex(X, Z),
into_all_ex(Z,Y).
into_all_ex(X, X) < linto_ex(X,).
or_and(X) < match(?A A (?1BVv?C), X).
or_and(X) < match((PAV?B)A?C, X).

Here, into_all_ex(X, Y) steps over all the existential binders
of term X so that Y will have the body of the last binder; in our
case it will be (?AV?B)A?C. This uses the atomic goal type
into_ex(X, Z) which takes a single step over an existential
quantifier. It will fail if there is not an existential quantifier,
which is the termination case for info_all_ex(X, Y). It uses
recursion and two atomic goal types to achieve this:

— match(P, T) holds if term T matches pattern P. This uses
Isabelle’s pattern-matching capabilities for terms.

— into_ex(X, Z) steps into the body of an existential. For
example, for into_ex(3x - P, Z), Z will be bound to P.

This simple, yet common, proof strategy illustrates how to
directly and intuitively represent a high-level proof pattern
in PSGraph; in this case, a strategy which automates some
standard proof steps, in order to “get to the meat of the proof™.
The strategy can easily be generalised, but for simplicity, the
proof strategy has been tailored for a particular problem.

6.2 Existential quantifiers via the “one point rule”

Here, we develop a proof strategy for instantiating existen-
tially bound variables through a technique known as the one
point rule[15,40].

We will illustrate this through a type of proof obligation
that is common in methods such as VDM [5,20] and Z [40]
called feasibility. This is used to show that operations can be

The Tinker tool for graphical tactic development

executed, through the existence of a resulting “after” state.
We will illustrate this with a feasibility proof obligations in
Z for a case study of a telephone exchange system used in
[27]:

sl#s2 Vx-Vy-yecal[{x}]=x#y

Jcallee’ -3call’ -Vx -Vy -y ccall[{x}] =x#y A
callee’ = domcall’ A call’ = call U {(s1, s2)}

Note that R[X] is the image of R over the set X. The details are
not important to follow the discussion; the key observation is
that it starts with existential quantifiers and the bound vari-
ables appears alone in one side of an equality. For example,
for callee’ it is dom call’, meaning that we should, according
to the one point rule, instantiate callee’ to dom call’.

Version 0: debugging with Tinker The one point rule should
first find the witness in the body of the quantifier and then
instantiate the quantified variable with this witness. However,
the quantifier in question may be prefixed by other existen-
tial variables (e.g. call’ is prefixed by callee’ in the above
example). The overall proof strategy must therefore also be
able to swap binders:

— first find the term to be used as a witness;

— then move the corresponding existential binder to the top,
if it is not already at the top;

— finally, instantiate the binder with the witness.

Figure 10 shows an implementation of this technique in
PSGraph. It has several new goal types:

— is_one_point(X) holds if the one point rule is applicable,
i.e. X has the shape required;

— is_top(K,T) holds if term x = K or term K = x is a sub-
term of 7', and x is existentially bound at the top-level;

— depth(K,T,D) holds if term x = K or term K = x is a
sub-term of 7', and x has D preceding existential binders;

— less(X,Y) implements the order X < Y.

The proof strategy first finds the term of the conclusion
to be used as a witness ?k by ENV_one_point_match. It then

~ e T
is_one_point(concl) *isfomf _point(concl) | lis_top(?k,concl)
|
|
1’7|| ENV_exists_depth(concl, 2k, ?n) |

1
lis_top(?k,concl) " :

any

G Ay y

rule_tac(exl, ?k) |<+| move_up(?k) "::
|

is_top(?k,concl)
lis_one_point(concl) |

ENV_one_point_match(concl, ?k)

is_top(?k,concl)

| subst_tac(ex_comm) |

|

|

|

|

|

w I
reduced(?k, ?n),
|

|

T |

is_top(?k,concl) |
|

Fig. 10 One point rule in PSGraph (version 0)

moves it to the top unless it is already at the top by move_up,
before the witness is instantiated by rule_tac(exI, ?k).

The move_up(?k) graph tactic takes a single argument 7%,
which means that the environment of a goal entering or leav-
ing this box will only contain ?k. It has two new environment
tactics:

— ENV_one_point_match(T,V) applies the “one point rule
match” by finding the (first) instance of x = K or K = x
in T, such that x is existentially bound (and only preceded
by other existential binders). It will then bind term K to
V in the goal type environment;

— ENV_exists_depth(T,K,N) will assign to N the number of
binders preceding the binder of x in 7', with x = K or
K =x.

The move_up graph tactic will first figure out the number
of binders preceding the given binder ?k and bind this to 7n.
It will then swap two existentials using the ex_comm rewrite
rule:

dx-Fy-P& dy-dx-P

There are three possible outcomes from applying this rewrite
rule, where two are wanted. The first wanted outcome is
that the binder is now on top. The goal will then exit the
graph tactic and then apply the rule(exl, ?k) tactic. The second
wanted case is that we have successfully moved the binder
one step up but we are not at the top. This is achieved by the
reduced(?k, ?n) goal type, whose schema is defined as

reduced(X, N) < lis_top(X, concl), depth(X, concl, D),
less(D, N).

The first literal states that X (?k) is not at the top of concl;
we then find the (new) depth D of X (?k) and make sure it is
reduced compared with the old depth N (?2)!!. The unwanted
step is that we have either swapped two other binders or that
we have swapped this binder the wrong way. This will not
make any progress to the proof and is therefore discarded (as
there is no output wire with a satisfying goal type).

When executing this strategy for our example, the proof
strategy fails. We then use the interactive mode of Tinker and
step through the proof to find the problem'2. In this case it
first finds the witness for callee’, and binds %k to dom call’.
As calleé' is at the top-level it will enter the rule_tac(exl, ?k)
box and fail. We can then inspect the Tinker logger, which
prints:

' The idea of using such term difference is similar to the PRESS system
for equational theories [38].

12 If this was part of a larger tactic, then we could have used a breakpoint
to start at the entry of this part of the strategy.

@ Springer

G. Grov, Y. Lin

|
______ e 1
|

|
lis_top(?k,concl)
thas_bound(?k)

I
Thas_bound(?k) :
|
|

N
PRASY 7

| ENV_exists_depth(concl, ?k, ?n) |

any
~ reduced(?k,?n)
subst_tac(ex_comm)

is_top(?k,concl)

!is_one_point(concl) js_top(?k,concl)

Fig. 11 One point rule in PSGraph (final version)

> FAILURE :
> ENV_DATA :

Fail to apply tactic for pnode a
[k: E_Trm(Domain B.0)]

From this we can see that the problem is to apply the
underlying (atomic) tactic, given the argument for ?k. The
problem is indeed the argument: ? is bound to dom call’
but call’ itself is a bound variable with the binder missing
(known as a “dangling variable”).

A correct one point rule To overcome this type of problems
we update the strategy as shown in Fig. 11. The goal type
has_bound(X) checks if X contains any bound variables.
If it does, then it enters the new sub-graph. There the first
environment tactic, ENV_bound_var(?k, ?1), will bind ?[to
the bound variable within ?k. For our example this is call’.
The second environment tactic, ENV_bound_one_point_
match(concl, 7k, ?1), works in a similar way to ENV_one_
point_match. It will find the term that ?/ equals (using the
“one point rule match”) and map ?k to this term. In our case,
7k will be mapped to call U {(s1, s2)} as a result. As ?k may
contain another bound variable this process will iterate!3.
In our case it will only make a single iteration and the vari-
able will be instantiated. After two applications of the overall
strategy, the conclusion of the goal becomes:

Vx-Vy-ye (callU{(sl,s2))P[{x}] =x#y A
dom (call U {(s1, s2)}) = dom (call U {(s1, s2)}) A
call U {(s1, s2)} = call U {(s1, s2)}

6.3 Rippling

The last two conjuncts of the conclusion follow from reflex-
ivity, which gives the goal:

sl #52 Vx-Vy-yecall{x}]=>x#y
Vx-Vy-y e (call U{(sl,sDP[{x}I=>x#y

13 We assume absence of circularity.

@ Springer

One can see that the conclusion is the same as one of the
hypotheses, but with additional “stuff”. Formally, there is
an embedding of this hypothesis into the conclusion [10].
A standard strategy for this type of goal is to rewrite the
conclusion towards this hypothesis. This strategy is called
rippling [10]. The second author’s Ph.D. thesis addressed
rippling for similar types of proof obligations [27].

Figure 12 shows such an encoding of rippling in PSGraph.
It is based upon [27] and extended with a limited form of
a technique called piecewise fertilisation [3] (graph tactic
pwf_forall_conj).

The hyp_embeds goal type expresses the “embedding”
property and is a requirement to start rippling:

hyp_embeds() <— member(hyps, X), embeds(X, concl).

Next, ENV_bind binds the conclusion to variable ?g. This
box has three output wires. One of them is labelled by
can_ripple(?g), which means rippling can be started:

can_ripple(X) < has_wrules(X), \hyp_bck_res().
hyp_bck_res() <— member(hyps, X), sub_term(X, concl).

Note that we assume the existence of a set of valid rewrite
rules, which are called wave rules in rippling. has_wrules(X)
is an atomic goal type which checks that there is an applicable
wave rule to apply to X. The second clause, !hyp_bck_res(),
checks that backward resolution with a hypothesis is not
applicable. A key feature of rippling is that it guarantees ter-
mination. This is achieved by the measure_reduces(?g) goal
type, which ensures that the current conclusion has reduced
this measure compared with ?g (the conclusion before the
step was made). We refer to [10] for more details of this
measure. Any non-rippling goal (\hyp_embeds()) is sent to
Isabelle’s powerful sledgehammer tool [36]. After a few rip-
ple steps, our goal becomes:

sl #£s2 Vx -Vy-yecall{x}]]=>x #y

Vx -Vy-yecalll{x}]=x#yA
yE{GLsDM{x}l = x #y

Logical connectives and quantifiers are handled by the
piecewise fertilisation graph tactic pwf_forall_conj. It will
skolemise the universal quantifiers in the goal and instantiate
the quantifiers in the hypothesis with the newly introduced
skolem functions (intro_elim_forall graph tactic). It then
breaks up the conjunction in the conclusion. This is the sec-
ond output wire of ENV_bind and identified by the c(forall)
goal type. This property holds for our goal. Piecewise fertil-
isation will generate two goals, where for the first there is no
embedding and it sent to sledgehammer that discharges it.
The second goal is:

The Tinker tool for graphical tactic development

|
hyp_embeds()
v g

- [e e e e = - —— -

hyp_embeds()

| ENV_bind(concl, ?g)

:| pwf_forall_conj H:: c(farall)Al

T L=
_____________ | can_ripple(?g -
rippled() ¢ : meaasure_ clforall
A | reduces(?g)

hyp_bck_res() hyp_subst() :

ripple_step | T iI’P‘lffd ()

| strong_fert | | weak_fert | :
————— .
any any ! \‘| sledgehammer e H
v v L] S
_____________ I ~ 4

————————

Fig. 12 A rippling-based strategy

sl # 52 yecall[{x}]=x #y
yecalll{x}]]=>x #y

The third and final output of ENV_bind is labelled by the
goal type:

rippled () <— hyp_bck_res().
rippled() <— hyp_subst().

This means that the goal is fully rippled. The goal then
enters the final step of rippling, which is called fertilisation.
This is encoded in the fertilisation graph tactic of Fig. 12.
Here, the hypothesis that was embedded in the conclusion
is applied, and there are two cases. The first case, identified
by the hyp_bck_res() goal type, is called strong fertilisation
and applies the hypothesis as backward resolution. The other
case, identified by the hyp_subst() goal type, is called weak
fertilisation and will rewrite the conclusion with the hypoth-
esis. The strong_fert and weak_fert atomic tactics are minor
extensions to Isabelle’s backward resolution and substitution
tactics, respectively. These extensions ensure that the correct
hypothesis is applied.

In our case, strong fertilisation will discharge the goal.
This concludes rippling and illustrates how to represent a
complex and well-known proof technique in PSGraph. We
believe that the graphical view helps in explaining how this
technique works.

7 Related work

This paper extends and builds on [30], where we introduced
new features of the Tinker GUI. We also build on [16,17],
where the Tinker tool and PSGraph were first introduced.
In [28] we develop the goal types and environment tactics
used here, as well as the breakpoints and logging features—
with the formal semantics for evaluation with breakpoints
and environments tactics given here. [28] also contains an
empirical study of PSGraph and Tinker via a set of re-

T |
]hypiembeds() : fertilisation |
v L

|
|
— — — L-="%
____|| | ~--7 I’
N [| V
~ || == Il_______—__l
| LI w3
| ¥ lc(conj),!c(forall) | dfomz”* :
|
W\ | rule(conjI) : : rule(alll) |
I 5 !
c(conj) ‘c(conj) A : : any |
' Ihyp_embeds 11 !
| VP ’() hyp_embeds() | || erule_tac(allE) :
| [
| sledgehammer + : : Ie(forall) |
L e e e e e e — -——== —-———=

engineered case studies developed in ProofPower. This can
be contrasted to this paper, where we show how to implement
existing proof patterns from scratch in PSGraph. In [29], we
show industrial application of PSGraph with ongoing work
of implementing D-RisQ Software Systems’ (www.drisq.
com) highly complex Supertac tactic in ProofPower [32].
Several of the features described here have been motivated
by this work. We have also previously developed a Rodin
version of Tinker [25], which we have briefly described in
Sect. 4.

Tinker is built on top of the Quantomatic graph-rewriting
engine [23], which is used internally as a library function.
There is also a web-based version of Tinker, which supports a
subset of the GUI features discussed here [7]. There has been
a considerable amount of work on visualising proof trees,
including: LUI [37] for mega; XIsabelle [33] for Isabelle;
ProveEasy [11] and Jape [6] for teaching; and some more
recent work for Mizar [26,34]. However, none of these
visualise the high-level strategy. Moreover, in PSGraph the
diagram is not just a visualisation of the proof strategy—it
is the proof strategy! Bundy [9] has argued for the role of
explanation for proof strategies, and we hope that we have
shown how PSGraph can help explaining the strategy of a
proof in addition to be used to guide the search. Such expla-
nation is important for maintenance when team changes, and
our work with D-RisQ [29] has had very promising ini-
tial results when porting their proof tactics from Ada to C
verification.

While there are tactic languages that support robust and
user-friendly tactics (e.g. Ltac [12] for Coq and Eisbach [31]
for Isabelle), we believe that the development and debugging
features of Tinker are novel. The most relevant tool that we
are familiar with to support debugging tactics is the Tacti-
cian tool for HOL light [2]. In HOL light, a proof can be a
sequence of (interactive) “apply” steps, or they can be com-
bined into a single step (by means of tactic combinators)
which is then applied. Tactician is a tool to fold sequences
into a single tactic and unfold a tactic into a sequence of
steps. This can then be used for debugging by enable users

@ Springer

www.drisq.com
www.drisq.com

G. Grov, Y. Lin

to step through a large tactic, similar to how this can be
achieved with Tinker. However, it only works for a small
subset of ML and it is not clear how this approach can be
generalised to arbitrary tactics. Moreover, it unfolds only
one particular branch of the proof which does not necessarily
reflect the underlying proof strategy. Another tool recently
developed to support debugging is a reasonably new trac-
ing mechanism for the simp tactic in Isabelle [19]. This is
implemented as a plugin for the Isabelle/jEdit Prover IDE. It
supports hierarchical viewing of simplification traces, and,
as with Tinker, it enables breakpoints to be inserted where
the user can step through and interact with the tactic. The
breakpoints can either be an application of certain theorems
or if the goal matches certain patterns. Note that it is not
used to debug the (sub)tactics used to implement the sim-
plifier: it will only show how the simplifier applies rewrite
steps. Our logging mechanism is considerably simpler and
closer to the more rudimentary ones supported in other ITP
systems (including the previous tracing mechanism for the
simp tactic in Isabelle). However, in practice we have found
that our logging mechanism is sufficient as it only relates to
a step at a time, while the simp tactic could involve hundreds
of steps.

Rippling has been implemented in several systems, the
closest being IsaPlanner [13]. In his Ph.D. thesis, Lin
addressed rippling for Event-B invariant proofs [27], which
is comparable to the Z representation used here. This was
implemented in IsaPlanner, which has a similar composition
language to tacticals that we used to motivate PSGraph in
§ 1. Finally, in [16] we developed a very basic and ad hoc
PSGraph version of rippling, which we have considerably
improved upon and extended here. One key difference is the
more sophisticated goal type language, which enables us to
make more details of rippling declarative and available to the
users (as opposed to “hidden” in the boxes).

8 Conclusion and future work

We have given a detailed and formal account of the semantics
of PSGraph and shown how this is implemented in Tinker,
with support for multiple interactive theorem provers. We
have shown how to develop and debug proof strategies using
the GUI of Tinker and illustrated use of the language and tool
by encoding several existing proof strategies from scratch in
PSGraph.

In the future, we would like to improve static checking of
PSGraph, such as being able to validate a PSGraph before
evaluation. We also plan to improve the layout algorithm and
develop and implement a better framework for combining
evaluation and user edits of PSGraphs. We are also working
on a more lightweight version of Tinker (independent of the
underlying Quantomatic tool), which will make it easier to

@ Springer

install and maintain. There have been recent advances in the
expressiveness of pattern graphs [22,23], which will enable
us to simplify the graphical parts of the evaluation. We are
also working on improving features for parametrised graph
tactics, in order to improve reuse.

Acknowledgements Aninitial version of the one point rule in PSGraph
was developed with Iain Whiteside. Thanks to Pierre Le Bras, who
implemented the Tinker GUI [30], Aleks Kissinger, Rob Arthan, Colin
O’Halloran and members of the AI4FM project for valuable discussions.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F.,
Voisin, L.: Rodin: an open toolset for modelling and reasoning
in Event-B. Int. J.Softw. Tools Technol. Transf. 12(6), 447-466
(2010)

2. Adams, M.: Refactoring proofs with tactician. In: Bianculli, D.,
Calinescu, R., Rumpe, B. (eds.) Software Engineering and For-
mal Methods: SEFM 2015, Revised Selected Papers, pp. 53-67.
Springer, Berlin (2015)

3. Armando, A., Smaill, A., Green, I.: Automatic synthesis of recur-
sive programs: the proof-planning paradigm. Autom. Softw. Eng.
6(4), 329-356 (1999)

4. Arthan, R., Jones, R.B.: Z in HOL in ProofPower. BCS FACS
FACTS (2005-1). http://www.bcs.org/upload/pdf/facts200503.pdf

5. Bjgrner, D., Jones, C.B. (eds.): The vienna development method:
the meta-language. Lecture Notes in Computer Science, vol. 61.
Springer (1978). doi:10.1007/3-540-08766-4

6. Bornat, R., Sufrin, B.: Jape: A calculator for animating proof-on-
paper. In: McCune, W. (ed.) CADE-14, pp. 412-415. Springer,
Berlin (1997). doi:10.1007/3-540-63104-6_41

7. Bras, PL.: Web based interface for graphical proof strate-
gies (2015). Undergraduate CS Honours Thesis. https://goo.gl/
LWG522

8. Bras,P.L., Grov, G., Lin, Y.: Tinker: user guide. http://ggrov.github.
io/tinker/userGuides.pdf

9. Bundy, A.: A science of reasoning. In: de Swart, H. (ed.) Inter-
national Conference on Automated Reasoning with Analytic
Tableaux and Related Methods, pp. 10-17. Springer, Berlin (1998)

10. Bundy, A., Basin, D., Hutter, D., Ireland, A.: Rippling: Meta-level
Guidance for Mathematical Reasoning, Cambridge Tracts in The-
oretical Computer Science, vol. 56. Cambridge University Press,
Cambridge (2005)

11. Burstall, R.: Proveeasy: Helping people learn to do proofs. ENTCS
31, 16-32 (2000). doi:10.1016/S1571-0661(05)80327-5

12. Delahaye, D.: A Proof Dedicated Meta-Language. Electronic Notes
in Theoretical Computer Science 70(2), 96-109 (2002)

13. Dixon, L., Fleuriot, J.: Higher Order Rippling in IsaPlanner. In:
Slind, K., Bunker, A., Gopalakrishnan, G. (eds.) TPHOL, pp. 83—
98. Springer, Berlin (2004)

14. Dixon, L., Kissinger, A.: Open graphs and monoidal theories.
Math. Struct. Comput. Sci. 23(2), 308-359 (2013). doi:10.1017/
S0960129512000138

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.bcs.org/upload/pdf/facts200503.pdf
http://dx.doi.org/10.1007/3-540-08766-4
http://dx.doi.org/10.1007/3-540-63104-6_41
https://goo.gl/LWG522
https://goo.gl/LWG522
http://ggrov.github.io/tinker/userGuides.pdf
http://ggrov.github.io/tinker/userGuides.pdf
http://dx.doi.org/10.1016/S1571-0661(05)80327-5
http://dx.doi.org/10.1017/S0960129512000138
http://dx.doi.org/10.1017/S0960129512000138

The Tinker tool for graphical tactic development

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

Freitas, L., Whiteside, I.: proof patterns for formal methods.
In: International Symposium on Formal Methods, pp. 279-295.
Springer, Berlin (2014)

Grov, G., Kissinger, A., Lin, Y.: A graphical language for proof
strategies. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.)
LPAR, pp. 324-339. Springer, Berlin (2013)

Grov, G., Kissinger, A., Lin, Y.: Tinker, tailor, solver, proof. In:
Benzmiiller, C., Paleo, B.W. (eds.) UITP 2014, EPTCS, vol. 167,
pp- 23-34. Open Publishing Association, London (2014)

Grov, G., Lin, Y.: Tinker webpage—resources for STTT paper.
http://ggrov.github.io/tinker/sttt16/. Accessed Feb 2017

Hupel, L.: Interactive simplifier tracing and debugging in Isabelle.
In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J.
(eds.) CICM, pp. 328-343. Springer, Berlin (2014)

Jones, C.B., Shaw, R.C.: Case Studies in Systematic Software
Development. Prentice Hall, Upper Saddle River (1990)
Kissinger, A., Merry, A., Soloviev, M.: Pattern graph rewrite sys-
tems. CoRR arXiv:1204.6695 (2012)

Kissinger, A., Zamdzhiev, V.: Equational reasoning with context-
free families of string diagrams. In: Parisi-Presicce, F., Westfechtel,
B. (eds.) Graph Transformation, pp. 33—47. Springer, Berlin (2015)
Kissinger, A., Zamdzhiev, V.: Quantomatic: a proof assistant for
diagrammatic reasoning. In: Felty, A.P., Middeldorp, A. (eds.)
CADE-25, LNCS, vol. 9195, pp. 326-336. Springer, Berlin (2015)
Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth
ten thousand words. Cognit. Sci. 11(1), 65-100 (1987)

Liang, Y., Lin, Y., Grov, G.: The Tinker for rodin. In: Butler, M.,
Schewe, K.D., Mashkoor, A., Biro, M. (eds.) 5th International Con-
ference on Abstract State Machines, Alloy, B, TLA, VDM, pp.
262-268. Springer, Berlin (2016)

Libal, T., Riener, M., Rukhaia, M.: Advanced proof viewing in
ProofTool. In: Benzmiiller, C., Woltzenlogel, B. (eds.) UITP 2014,
EPTCS, vol. 167, pp. 35-47. Open Publishing Association, London
(2014)

Lin, Y.: The use of rippling to automate event-B invariant preser-
vation proofs. Ph.D. thesis, The University of Edinburgh (2015)
Lin, Y., Grov, G., Arthan, R.: Understanding and maintaining tac-
tics graphically OR how we are learning that a diagram can be worth
more than 10K LoC. J. Formaliz. Reason. 9(2), 69-130 (2016)

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Lin, Y., Grov, G., O’Halloran, C.: G., P.: A Super Industrial Appli-
cation of PSGraph. Butler, M.J., Schewe, KD., Mashkoor, A., Biré
M. (eds.) Sth International Conference on Abstract State Machines.
Alloy, B, TLA, VDM, and Z, pp. 319-325. Springer, Berlin (2016)
Lin, Y., Le Bras, P, Grov, G.: Developing and debugging proof
strategies by Tinkering. In: Chechik, M., Raskin, J.F. (eds.) Tools
and Algorithms for the Construction and Analysis of Systems, pp.
573-579. Springer, Berlin (2016)

Matichuk, D., Wenzel, M., Murray, T.: An Isabelle proof method
language. In: Klein, G., Gamboa, R. (eds.) 5th International Con-
ference on Interactive Theorem Proving, pp. 390-405. Springer,
Cham (2014)

O’Halloran, C.: Automated verification of code automatically gen-
erated from simulink. ASE 20(2), 237-264 (2013)

Ozols, M.A., Cant, A., Eastaughffe, K.A.: Xisabelle: A sys-
tem description. In: McCune, W. (ed.) CADE-14, pp. 400—403.
Springer, Berlin (1997)

Pak, K.: The algorithms for improving and reorganizing natural
deduction proofs. Stud. Logic Gramm. Rhetor. 22(35), 95-112
(2010)

Paulson, L.C.: Isabelle: A Generic Theorem Prover, vol. 828.
Springer, Berlin (1994)

Paulson, L.C., Blanchette, J.C.: Three years of experience with
Sledgehammer, a practical link between automatic and interactive
theorem provers. IWIL-2010 1, 1-11 (2010)

Siekmann, J.H., Hess, S.M., Benzmiiller, C., Cheikhrouhou, L.,
Fiedler, A., Horacek, H., Kohlhase, M., Konrad, K., Meier, A.,
Melis, E., Pollet, M., Sorge, V.: LOUI: lovely OMEGA user inter-
face. Form. Asp. Comput. 11(3), 326-342 (1999)

Sterling, L., Bundy, A., Byrd, L., O’Keefe, R., Silver, B.: Solving
symbolic equations with PRESS. In: Calmet, J. (ed.) Computer
Algebra, no. 144 in LNCS, pp. 109-116. Springer, Berlin (1982).
Also available in J. Symbol. Comput. 7, pp 71-84 (1989)
Wenzel, M.: Isabelle/Isar — a versatile environment for human-
readable formal proof documents. Ph.D. thesis, Technische Uni-
versitdt Miinchen (2002)

Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and
Proof, vol. 39. Prentice Hall, Upper Saddle River (1996)

@ Springer

http://ggrov.github.io/tinker/sttt16/
http://arxiv.org/abs/1204.6695

	The Tinker tool for graphical tactic development
	Abstract
	1 Introduction
	2 The PSGraph language
	2.1 Goal types
	2.2 Graphical proof strategies

	3 Proving with PSGraph
	3.1 A formal account of evaluation

	4 The Tinker toolThe Tinker source code is available from webpageSTTT.
	5 Developing and debugging with the GUIExample screen casts can be found at webpageSTTT.
	5.1 Developing proof strategies
	5.2 Debugging proof strategies

	6 Proof patterns as PSGraphs
	6.1 ``Disjunctions to the top''
	6.2 Existential quantifiers via the ``one point rule''
	6.3 Rippling

	7 Related work
	8 Conclusion and future work
	Acknowledgements
	References

