8 research outputs found

    Temperature dependence of electrical properties of electrodeposited Ni-based nanowires

    Get PDF
    The influence of annealing on the microstructure and the electrical properties of cylindrical nickel-based nanowires has been investigated. Nanowires of nickel of nominally 200 nm diameter and of permalloy (Py) of nominally 70 nm were fabricated by electrochemical deposition into nanoporous templates of polycarbonate and anodic alumina, respectively. Characterization was carried out on as-grown nanowires and nanowires heat treated at 650°C. Transmission electron microscopy and diffraction imaging of as-grown and annealed nanowires showed temperature-correlated grain growth of an initially nano-crystalline structure with ≤8 nm (Ni) and ≤20 nm (Py) grains towards coarser poly-crystallinity with grain sizes up to about 160 nm (Ni) and 70 nm (Py), latter being limited by the nanowire width. The electrical conductivity of individual as-grown and annealed Ni nanowires was measured in situ within a scanning electron microscope environment. At low current densities, the conductivity of annealed nanowires was estimated to have risen by a factor of about two over as-grown nanowires. We attribute this increase, at least in part, to the observed grain growth. The annealed nanowire was subsequently subjected to increasing current densities. Above 120 kA mm -2 the nanowire resistance started to rise. At 450 kA mm -2 the nanowire melted and current flow ceased

    COCAP : a carbon dioxide analyser for small unmanned aircraft systems

    Get PDF
    Unmanned aircraft systems (UASs) could provide a cost-effective way to close gaps in the observation of the carbon cycle, provided that small yet accurate analysers are available. We have developed a COmpact Carbon dioxide analyser for Airborne Platforms (COCAP). The accuracy of COCAP's carbon dioxide (CO2) measurements is ensured by calibration in an environmental chamber, regular calibration in the field and by chemical drying of sampled air. In addition, the package contains a lightweight thermal stabilisation system that reduces the influence of ambient temperature changes on the CO2 sensor by 2 orders of magnitude. During validation of COCAP's CO2 measurements in simulated and real flights we found a measurement error of 1.2 mu mol mol(-1) or better with no indication of bias. COCAP is a self-contained package that has proven well suited for the operation on board small UASs. Besides carbon dioxide dry air mole fraction it also measures air temperature, humidity and pressure. We describe the measurement system and our calibration strategy in detail to support others in tapping the potential of UASs for atmospheric trace gas measurements.Peer reviewe

    Surface Modifications by Field Induced Diffusion

    Get PDF
    By applying a voltage pulse to a scanning tunneling microscope tip the surface under the tip will be modified. We have in this paper taken a closer look at the model of electric field induced surface diffusion of adatoms including the van der Waals force as a contribution in formations of a mound on a surface. The dipole moment of an adatom is the sum of the surface induced dipole moment (which is constant) and the dipole moment due to electric field polarisation which depends on the strength and polarity of the electric field. The electric field is analytically modelled by a point charge over an infinite conducting flat surface. From this we calculate the force that cause adatoms to migrate. The calculated force is small for voltage used, typical 1 pN, but due to thermal vibration adatoms are hopping on the surface and even a small net force can be significant in the drift of adatoms. In this way we obtain a novel formula for a polarity dependent threshold voltage for mound formation on the surface for positive tip. Knowing the voltage of the pulse we then can calculate the radius of the formed mound. A threshold electric field for mound formation of about 2 V/nm is calculated. In addition, we found that van der Waals force is of importance for shorter distances and its contribution to the radial force on the adatoms has to be considered for distances smaller than 1.5 nm for commonly used voltages

    Electrical Sintering of Silver Nanoparticle Ink Studied by In-Situ TEM Probing

    Get PDF
    Metallic nanoparticle inks are used for printed electronics, but to reach acceptable conductivity the structures need to be sintered, usually using a furnace. Recently, sintering by direct resistive heating has been demonstrated. For a microscopic understanding of this Joule heating sintering method, we studied the entire process in real time inside a transmission electron microscope equipped with a movable electrical probe. We found an onset of Joule heating induced sintering and coalescence of nanoparticles at power levels of 0.1–10 mW/m3. In addition, a carbonization of the organic shells that stabilize the nanoparticles were found, with a conductivity of 4 105 Sm−1

    Simple Fabrication of Gold Nanobelts and Patterns

    Get PDF
    Gold nanobelts are of interest in several areas; however, there are only few methods available to produce these belts. We report here on a simple evaporation induced self-assembly (EISA) method to produce porous gold nanobelts with dimensions that scale across nanometer (thickness ~80 nm) and micrometer (width ~20 μm), to decimeter (length ~0.15 m). The gold nanobelts are well packed on the beaker wall and can be easily made to float on the surface of the solution for depositing onto other substrates. Microscopy showed that gold nanobelts had a different structure on the two sides of the belt; the density of gold nanowires on one side was greater than on the other side. Electrical measurements showed that these nanobelts were sensitive to compressive or tensile forces, indicating a potential use as a strain sensor. The patterned nanobelts were further used as a template to grow ZnO nanowires for potential use in applications such as piezo-electronics. © 2012 Zhang et al

    Exfoliated MoS2 in Water without Additives

    No full text
    Many solution processing methods of exfoliation of layered materials have been studied during the last few years; most of them are based on organic solvents or rely on surfactants andother funtionalization agents. Pure water should be an ideal solvent, however, it is generallybelieved, based on solubility theories that stable dispersions of water could not be achievedand systematic studies are lacking. Here we describe the use of water as a solvent and thestabilization process involved therein. We introduce an exfoliation method of molybdenumdisulfide (MoS2) in pure water at high concentration (i.e., 0.14±0.01 g L−1). This was achieved by thinning the bulk MoS2by mechanical exfoliation between sand papers and dis-persing it by liquid exfoliation through probe sonication in water. We observed thin MoS2nanosheets in water characterized by TEM, AFM and SEM images. The dimensions of thenanosheets were around 200 nm, the same range obtained in organic solvents. Electropho-retic mobility measurements indicated that electrical charges may be responsible for the sta-bilization of the dispersions. A probability decay equation was proposed to compare thestability of these dispersions with the ones reported in the literature. Water can be used as asolvent to disperse nanosheets and although the stability of the dispersions may not be ashigh as in organic solvents, the present method could be employed for a number of applications where the dispersions can be produced on site and organic solvents are not desirable.Paper Solar Cell
    corecore