254 research outputs found

    Assesment [sic] of cement augmentation and screw trajectory on pedicle screw fixation in osteoporotic vertebrae

    Get PDF
    Internal fixation of osteoporotic spines for fracture or deformity is currently difficult, owing to failure at the bone- implant interface. This study aims to ascertain whether pedicle screw trajectory and pedicle cortex retention can independently significantly affect fixation strength in osteoporotic vertebrae."MU Grant #00029187

    Methylated arsenic and antimony species in suspended matter of the river Ruhr, Germany

    No full text
    International audienceThe methylated antimony and arsenic species content of sediments derived from a sedimentation bowl of the river Ruhr were monitored over a 12 month period. The most prevalent species detected were monomethylarsenic (MMAs) and monomethylantimony (MMSb). The methylantimony and methylarsenic species concentration was found to be directly correlated to the winter spate. As the biological activity in the water body is generally low at this time of the year, it may be concluded that the concentration maxima in winter originated from the translocation of soil- and sediment particles to the river by heavy rains and the melting of snow. A second maximum in Spring/early Summer was observed for the methylarsenic species, and specifically the dimethylarsenic species (DMAs); this occurred in parallel to the algal bloom. A change in the methylarsenic speciation pattern was observed between April, May and June, with DMAs replacing MMAs as the dominant methylarsenic species. For methylated antimony species no seasonal variation in the species pattern was detected. Taken together these data strongly indicate a higher degree of transformation of arsenic compared to antimony in the Ruhr river system in spring and can be taken as a record for a biogeochemical different behaviour of these two elements which are often treated as equivalent in environmental studies

    Assessing Patient Satisfaction In An Outpatient Apheresis Setting

    Get PDF

    A Mutation in Amino Acid Permease AAP6 Reduces the Amino Acid Content of the Arabidopsis Sieve Elements but Leaves Aphid Herbivores Unaffected.

    Get PDF
    The aim of this study was to investigate the role of the amino acid permease gene AAP6 in regulating phloem amino acid composition and then to determine the effects of this altered diet on aphid performance. A genotype of Arabidopsis thaliana (L.) was produced in which the function of the amino acid permease gene AAP6 (At5g49630) was abolished. Plants homozygous for the insertionally inactivated AAP6 gene had a significantly larger mean rosette width than the wild type and a greater number of cauline leaves. Seeds from the aap6 mutant were also significantly larger than those from the wild-type plants. Sieve element (SE) sap was collected by aphid stylectomy and the amino acids derivatized, separated, and quantified using Capillary Electrophoresis with Laser Induced Fluorescence (CE-LIF). In spite of the large variation across samples, the total amino acid concentration of SE sap of the aap6 mutant plants was significantly lower than that of the wild-type plants. The concentrations of lysine, phenylalanine, leucine, and aspartic acid were all significantly lower in concentration in the aap6 mutant plants compared with wild-type plants. This is the first direct demonstration of a physiological role for an amino acid transporter in regulating SE composition in vivo. The amino acid availability in sieve element sap is thought to be the major limiting factor for aphid growth and reproduction. Despite the changes in their diet, the aphid Myzus persicae(Sulzer) displayed only small changes in feeding behaviour on mutant plants when measured using the Electronic Penetration Graph (EPG) technique. Salivation by the aphid into the SE (E1 phase) was increased on mutant plants but there was no significant effect on other feeding EPG behaviours, or in the rate of honeydew production. Consistent with the small effect on aphid feeding behaviour, there was only a small effect of reduced sieve element amino acid concentration on aphid reproduction. The data are discussed in relation to the regulation of phloem composition and the role of phloem amino acids in regulating aphid performance

    Using sentinel-1 and sentinel-2 time series for slangbos mapping in the free state province, South Africa

    Get PDF
    Increasing woody cover and overgrazing in semi-arid ecosystems are known to be the major factors driving land degradation. This study focuses on mapping the distribution of the slangbos shrub (Seriphium plumosum) in a test region in the Free State Province of South Africa. The goal of this study is to monitor the slangbos encroachment on cultivated land by synergistically combining Synthetic Aperture Radar (SAR) (Sentinel-1) and optical (Sentinel-2) Earth observation information. Both optical and radar satellite data are sensitive to different vegetation properties and surface scattering or reflection mechanisms caused by the specific sensor characteristics. We used a supervised random forest classification to predict slangbos encroachment for each individual crop year between 2015 and 2020. Training data were derived based on expert knowledge and in situ information from the Department of Agriculture, Land Reform and Rural Development (DALRRD). We found that the Sentinel-1 VH (cross-polarization) and Sentinel-2 SAVI (Soil Adjusted Vegetation Index) time series information have the highest importance for the random forest classifier among all input parameters. The modelling results confirm the in situ observations that pastures are most affected by slangbos encroachment. The estimation of the model accuracy was accomplished via spatial cross-validation (SpCV) and resulted in a classification precision of around 80% for the slangbos class within each time step

    Monitoring Cell Death in Regorafenib-Treated Experimental Colon Carcinomas Using Annexin-Based Optical Fluorescence Imaging Validated by Perfusion MRI

    Get PDF
    Objective To investigate annexin-based optical fluorescence imaging (OI) for monitoring regorafenib-induced early cell death in experimental colon carcinomas in rats, validated by perfusion MRI and multiparametric immunohistochemistry. Materials and Methods Subcutaneous human colon carcinomas (HT-29) in athymic rats (n = 16) were imaged before and after a one-week therapy with regorafenib (n = 8) or placebo (n = 8) using annexin-based OI and perfusion MRI at 3 Tesla. Optical signal-to-noise ratio (SNR) and MRI tumor perfusion parameters (plasma flow PF, mL/100mL/min;plasma volume PV,%) were assessed. On day 7, tumors underwent immunohistochemical analysis for tumor cell apoptosis (TUNEL),proliferation (Ki-67),and microvascular density (CD31). Results Apoptosis-targeted OI demonstrated a tumor-specific probe accumulation with a significant increase of tumor SNR under therapy (mean Delta +7.78 +/- 2.95, control: -0.80 +/- 2.48, p = 0.021). MRI detected a significant reduction of tumor perfusion in the therapy group (mean Delta PF -8.17 +/- 2.32 mL/100 mL/min, control -0.11 +/- 3.36 mL/100 mL/min, p = 0.036). Immunohistochemistry showed significantly more apoptosis (TUNEL;11392 +/- 1486 vs. 2921 +/- 334, p = 0.001),significantly less proliferation (Ki-67;1754 +/- 184 vs. 2883 +/- 323, p = 0.012),and significantly lower microvascular density (CD31;107 +/- 10 vs. 182 +/- 22, p = 0.006) in the therapy group. Conclusions Annexin-based OI allowed for the non-invasive monitoring of regorafenib-induced early cell death in experimental colon carcinomas, validated by perfusion MRI and multiparametric immunohistochemistry

    Improvement of the approaches to improve the health of the population in the regions of Russia

    Get PDF
    Significant differentiation of socio-economic indicators of the subjects of the Russian Federation indicates significant regional differences in the initial conditions of demographic development. The aim of the study is to develop measures to improve the policy in the field of public health at the regional level in Russia, taking into account the factors of formation of public health. We conducted a factor analysis of the socio-economic situation in the regions, followed by clustering on the basis of a list of selected statistical indicators, which allowed us to develop common approaches to improving health policy for each group of subjects of the Russian Federation, taking into account their main historical, geographical and socioeconomic characteristics

    Arsenic Metabolism by Human Gut Microbiota upon in Vitro Digestion of Contaminated Soils

    Get PDF
    BACKGROUND: Speciation analysis is essential when evaluating risks from arsenic (As) exposure. In an oral exposure scenario, the importance of presystemic metabolism by gut microorganisms has been evidenced with in vivo animal models and in vitro experiments with animal microbiota. However, it is unclear whether human microbiota display similar As metabolism, especially when present in a contaminated matrix. OBJECTIVES: We evaluated the metabolic potency of in vitro cultured human colon microbiota toward inorganic As (iAs) and As-contaminated soils. METHODS: A colon microbial community was cultured in a dynamic model of the human gut. These colon microbiota were incubated with iAs and with As-contaminated urban soils. We determined As speciation analysis using high-performance liquid chromatography coupled with inductively coupled plasma mass spectrometry. RESULTS: We found a high degree of methylation for colon digests both of iAs (10 mu g methylarsenical/g biomass/hr) and of As-contaminated soils (up to 28 mu g/g biomass/hr). Besides the formation of monomethylarsonic acid (MMA(V)), we detected the highly toxic monomethylarsonous acid (MMA(III)). Moreover, this is the first description of microbial thiolation leading to monomethylmonothioarsonic acid (MMMTA(V)). MMMTA(V), the toxicokinetic properties of which are not well known, was in many cases a major metabolite. CONCLUSIONS: Presystemic As metabolism is a significant process in the human body. Toxicokinetic studies aiming to completely elucidate the As metabolic pathway would therefore benefit from incorporating the metabolic potency of human gut microbiota. This will result in more accurate risk characterization associated with As exposures

    Deficiency in the LIM-only protein Fhl2 impairs skin wound healing

    Get PDF
    After skin wounding, the repair process is initiated by the release of growth factors, cytokines, and bioactive lipids from injured vessels and coagulated platelets. These signal molecules induce synthesis and deposition of a provisional extracellular matrix, as well as fibroblast invasion into and contraction of the wounded area. We previously showed that sphingosine-1-phosphate (S1P) triggers a signal transduction cascade mediating nuclear translocation of the LIM-only protein Fhl2 in response to activation of the RhoA GTPase (Muller, J.M., U. Isele, E. Metzger, A. Rempel, M. Moser, A. Pscherer, T. Breyer, C. Holubarsch, R. Buettner, and R. Schule. 2000. EMBO J. 19:359–369; Muller, J.M., E. Metzger, H. Greschik, A.K. Bosserhoff, L. Mercep, R. Buettner, and R. Schule. 2002. EMBO J. 21:736–748.). We demonstrate impaired cutaneous wound healing in Fhl2-deficient mice rescued by transgenic expression of Fhl2. Furthermore, collagen contraction and cell migration are severely impaired in Fhl2-deficient cells. Consequently, we show that the expression of α-smooth muscle actin, which is regulated by Fhl2, is reduced and delayed in wounds of Fhl2-deficient mice and that the expression of p130Cas, which is essential for cell migration, is reduced in Fhl2-deficient cells. In summary, our data demonstrate a function of Fhl2 as a lipid-triggered signaling molecule in mesenchymal cells regulating their migration and contraction during cutaneous wound healing

    Regulation of Glucose Metabolism by MuRF1 and Treatment of Myopathy in Diabetic Mice with Small Molecules Targeting MuRF1

    Get PDF
    The muscle-specific ubiquitin ligase MuRF1 regulates muscle catabolism during chronic wasting states, although its roles in general metabolism are less-studied. Here, we metabolically profiled MuRF1-deficient knockout mice. We also included knockout mice for MuRF2 as its closely related gene homolog. MuRF1 and MuRF2-KO (knockout) mice have elevated serum glucose, elevated triglycerides, and reduced glucose tolerance. In addition, MuRF2-KO mice have a reduced tolerance to a fat-rich diet. Western blot and enzymatic studies on MuRF1-KO skeletal muscle showed perturbed FoxO-Akt signaling, elevated Akt-Ser-473 activation, and downregulated oxidative mitochondrial metabolism, indicating potential mechanisms for MuRF1,2-dependent glucose and fat metabolism regulation. Consistent with this, the adenoviral re-expression of MuRF1 in KO mice normalized Akt-Ser-473, serum glucose, and triglycerides. Finally, we tested the MuRF1/2 inhibitors MyoMed-205 and MyoMed-946 in a mouse model for type 2 diabetes mellitus (T2DM). After 28 days of treatment, T2DM mice developed progressive muscle weakness detected by wire hang tests, but this was attenuated by the MyoMed-205 treatment. While MyoMed-205 and MyoMed-946 had no significant effects on serum glucose, they did normalize the lymphocyte–granulocyte counts in diabetic sera as indicators of the immune response. Thus, small molecules directed to MuRF1 may be useful in attenuating skeletal muscle strength loss in T2DM conditions
    corecore