18 research outputs found
Mechanical model for a collagen fibril pair in extracellular matrix
In this paper, we model the mechanics of a collagen pair in the connective
tissue extracellular matrix that exists in abundance throughout animals,
including the human body. This connective tissue comprises repeated units of
two main structures, namely collagens as well as axial, parallel and regular
anionic glycosaminoglycan between collagens. The collagen fibril can be modeled
by Hooke's law whereas anionic glycosaminoglycan behaves more like a
rubber-band rod and as such can be better modeled by the worm-like chain model.
While both computer simulations and continuum mechanics models have been
investigated the behavior of this connective tissue typically, authors either
assume a simple form of the molecular potential energy or entirely ignore the
microscopic structure of the connective tissue. Here, we apply basic physical
methodologies and simple applied mathematical modeling techniques to describe
the collagen pair quantitatively. We find that the growth of fibrils is
intimately related to the maximum length of the anionic glycosaminoglycan and
the relative displacement of two adjacent fibrils, which in return is closely
related to the effectiveness of anionic glycosaminoglycan in transmitting
forces between fibrils. These reveal the importance of the anionic
glycosaminoglycan in maintaining the structural shape of the connective tissue
extracellular matrix and eventually the shape modulus of human tissues. We also
find that some macroscopic properties, like the maximum molecular energy and
the breaking fraction of the collagen, are also related to the microscopic
characteristics of the anionic glycosaminoglycan
Hysteresis in Pressure-Driven DNA Denaturation
In the past, a great deal of attention has been drawn to thermal driven denaturation processes. In recent years, however, the discovery of stress-induced denaturation, observed at the one-molecule level, has revealed new insights into the complex phenomena involved in the thermo-mechanics of DNA function. Understanding the effect of local pressure variations in DNA stability is thus an appealing topic. Such processes as cellular stress, dehydration, and changes in the ionic strength of the medium could explain local pressure changes that will affect the molecular mechanics of DNA and hence its stability. In this work, a theory that accounts for hysteresis in pressure-driven DNA denaturation is proposed. We here combine an irreversible thermodynamic approach with an equation of state based on the Poisson-Boltzmann cell model. The latter one provides a good description of the osmotic pressure over a wide range of DNA concentrations. The resulting theoretical framework predicts, in general, the process of denaturation and, in particular, hysteresis curves for a DNA sequence in terms of system parameters such as salt concentration, density of DNA molecules and temperature in addition to structural and configurational states of DNA. Furthermore, this formalism can be naturally extended to more complex situations, for example, in cases where the host medium is made up of asymmetric salts or in the description of the (helical-like) charge distribution along the DNA molecule. Moreover, since this study incorporates the effect of pressure through a thermodynamic analysis, much of what is known from temperature-driven experiments will shed light on the pressure-induced melting issue
Manual therapies for migraine: a systematic review
Migraine occurs in about 15% of the general population. Migraine is usually managed by medication, but some patients do not tolerate migraine medication due to side effects or prefer to avoid medication for other reasons. Non-pharmacological management is an alternative treatment option. We systematically reviewed randomized clinical trials (RCTs) on manual therapies for migraine. The RCTs suggest that massage therapy, physiotherapy, relaxation and chiropractic spinal manipulative therapy might be equally effective as propranolol and topiramate in the prophylactic management of migraine. However, the evaluated RCTs had many methodological shortcomings. Therefore, any firm conclusion will require future, well-conducted RCTs on manual therapies for migraine
The impact of psychosocial stress and stress management on immune responses in patients with cancer
The range of psychosocial stress factors/processes (eg, chronic stress, distress states, coping, social adversity) were reviewed as they relate to immune variables in cancer along with studies of psychosocial interventions on these stress processes and immune measures in cancer populations. The review includes molecular, cellular, and clinical research specifically examining the effects of stress processes and stress‐management interventions on immune variables (eg, cellular immune function, inflammation), which may or may not be changing directly in response to the cancer or its treatment. Basic psychoneuroimmunologic research on stress processes (using animal or cellular/tumor models) provides leads for investigating biobehavioral processes that may underlie the associations reported to date. The development of theoretically driven and empirically supported stress‐management interventions may provide important adjuncts to clinical cancer care going forward.
The range of psychosocial stress factors/processes related to immune variables in cancer are reviewed along with the effects of stress management interventions on these stress and immune measures in cancer populations. Molecular, cellular, and clinical research on stress‐immune associations provides leads for understanding the effects of stress management interventions on clinical health outcomes, which may provide important adjuncts to clinical cancer care going forward