922 research outputs found

    Moduli stabilization in (string) model building: gauge fluxes and loops

    Full text link
    We discuss the moduli stabilization arising in the presence of gauge fluxes, R-symmetry twists and non-perturbative effects in the context of 6-dimensional supergravity models. We show how the presence of D-terms, due to the gauge fluxes, is compatible with gaugino condensation, and that the two effects, combined with the R-symmetry twist, do stabilize all the Kaehler moduli present in the model, in the spirit of KKLT. We also calculate the flux-induced one-loop correction to the scalar potential coming from charged hypermultiplets, and find that it does not destabilize the minimum.Comment: Submitted for the SUSY07 proceedings, 4 pages, LaTe

    Gauge unification, non-local breaking, open strings

    Full text link
    The issue of non-local GUT symmetry breaking is addressed in the context of open string model building. We study ZNxZM' orbifolds with all the GUT-breaking orbifold elements acting freely, as rotations accompanied by translations in the internal space.We consider open strings quantized on these backgrounds, distinguishing whether the translational action is parallel or perpendicular to the D-branes. GUT breaking is impossible in the purely perpendicular case, non-local GUT breaking is instead allowed in the purely parallel case. In the latter, the scale of breaking is set by the compactification moduli, and there are no fixed points with reduced gauge symmetry, where dangerous explicit GUT-breaking terms could be located. We investigate the mixed parallel+perpendicular case in a Z2xZ2' example, having also a simplified field theory realization.It is a new S1/Z2xZ2' orbifold-GUT model, with bulk gauge symmetry SU(5)xSU(5) broken locally to the Standard Model gauge group. In spite of the locality of the GUT symmetry breaking, there is no localized contribution to the running of the coupling constants, and the unification scale is completely set by the length of S1.Comment: 16 pages, 6 figure

    Axions in string theory — slaying the Hydra of dark radiation

    Get PDF
    It is widely believed that string theory easily allows for a QCD axion in the cosmologically favored mass range. The required small decay constant, f(a) << M-P, can be implemented by using a large compactification volume. This points to the Large Volume Scenario which in turn makes certain cosmological predictions: first, the closed string axion behaves similarly to a field-theoretic axion in the pre-inflationary scenario, i.e. the initial value can be tuned but one is constrained by isocurvature fluctuations. In addition, the volume represents a long-lived modulus that may lead to an early matter-dominated phase. Finally, the decay of the volume modulus to its own axion tends to overproduce dark radiation. In this paper we aim to carefully analyze the cosmology by studying models that not only allow for a QCD axion but also include inflation. Quite generally, limits on isocurvature fluctuations restrict us to relatively low-scale inflation, which in the present stringy context points to Kahler moduli inflation. As a novel feature we find that the lightest (volume) modulus couples strongly to the Higgs. It hence quickly decays to the SM, thus resolving the original dark radiation problem. This decay is much faster than that of the inflaton, implying that reheating is determined by the inflaton decay. The inflaton could potentially reintroduce a dark radiation problem since it decays to lighter moduli and their axions with equal rates. However, due its mixing with the QCD-saxion, the inflaton has also a direct decay rate to the SM, enhanced by the number of SM gauge bosons. This results in an amount of dark radiation that is consistent with present limits but potentially detectable in future measurements

    Chiral Compactification on a Square

    Full text link
    We study quantum field theory in six dimensions with two of them compactified on a square. A simple boundary condition is the identification of two pairs of adjacent sides of the square such that the values of a field at two identified points differ by an arbitrary phase. This allows a chiral fermion content for the four-dimensional theory obtained after integrating over the square. We find that nontrivial solutions for the field equations exist only when the phase is a multiple of \pi/2, so that this compactification turns out to be equivalent to a T^2/Z_4 orbifold associated with toroidal boundary conditions that are either periodic or anti-periodic. The equality of the Lagrangian densities at the identified points in conjunction with six-dimensional Lorentz invariance leads to an exact Z_8\times Z_2 symmetry, where the Z_2 parity ensures the stability of the lightest Kaluza-Klein particle.Comment: 28 pages, latex. References added. Clarifying remarks included in section 2. Minor corrections made in section

    The MSSM from Scherk-Schwarz Supersymmetry Breaking

    Get PDF
    We present a five-dimensional model compactified on an interval where supersymmetry is broken by the Scherk-Schwarz mechanism. The gauge sector propagates in the bulk, two Higgs hypermultiplets are quasilocalized, and quark and lepton multiplets localized, in one of the boundaries. The effective four-dimensional theory is the MSSM with very heavy gauginos, heavy squarks and light sleptons and Higgsinos. The soft tree-level squared masses of the Higgs sector can be negative and they can (partially) cancel the positive one-loop contributions from the gauge sector. Electroweak symmetry breaking can then comfortably be triggered by two-loop radiative corrections from the top-stop sector. The fine tuning required to obtain the electroweak scale is found to be much smaller than in the MSSM, with essentially no fine-tuning for few TeV gaugino masses. All bounds from direct Higgs searches at LEP and from electroweak precision observables can be satisfied. The lightest supersymmetric particle is a (Higgsino-like) neutralino that can accomodate the abundance of Dark Matter consistently with recent WMAP observations.Comment: 23 pages, 3 figure

    The order of the phase transition in 3d U(1)+Higgs theory

    Get PDF
    We study the order of the phase transition in the 3d U(1)+Higgs theory, which is the Ginzburg-Landau theory of superconductivity. We confirm that for small scalar self-coupling the transition is of first order. For large scalar self-coupling the transition ceases to be of first order, and a non-vanishing scalar mass suggests that the transition may even be of higher than second order.Comment: Poster at LATTICE96(electroweak). 4 pages, 5 figure

    Gauge Unification in Highly Anisotropic String Compactifications

    Full text link
    It is well-known that heterotic string compactifications have, in spite of their conceptual simplicity and aesthetic appeal, a serious problem with precision gauge coupling unification in the perturbative regime of string theory. Using both a duality-based and a field-theoretic definition of the boundary of the perturbative regime, we reevaluate the situation in a quantitative manner. We conclude that the simplest and most promising situations are those where some of the compactification radii are exceptionally large, corresponding to highly anisotropic orbifold models. Thus, one is led to consider constructions which are known to the effective field-theorist as higher-dimensional or orbifold grand unified theories (orbifold GUTs). In particular, if the discrete symmetry used to break the GUT group acts freely, a non-local breaking in the larger compact dimensions can be realized, leading to a precise gauge coupling unification as expected on the basis of the MSSM particle spectrum. Furthermore, a somewhat more model dependent but nevertheless very promising scenario arises if the GUT breaking is restricted to certain singular points within the manifold spanned by the larger compactification radii.Comment: 34 pages, 4 figures, more references adde

    Realization of Uq(so(N))U_q(so(N)) within the differntial algebra on RqN{\bf R}_q^N

    Full text link
    We realize the Hopf algebra Uq1(so(N))U_{q^{-1}}(so(N)) as an algebra of differential operators on the quantum Euclidean space RqN{\bf R}_q^N. The generators are suitable q-deformed analogs of the angular momentum components on ordinary RN{\bf R}^N. The algebra Fun(RqN)Fun({\bf R}_q^N) of functions on RqN{\bf R}_q^N splits into a direct sum of irreducible vector representations of Uq1(so(N))U_{q^{-1}}(so(N)); the latter are explicitly constructed as highest weight representations.Comment: 26 pages, 1 figur

    Energy Transfer between Throats from a 10d Perspective

    Full text link
    Strongly warped regions, also known as throats, are a common feature of the type IIB string theory landscape. If one of the throats is heated during cosmological evolution, the energy is subsequently transferred to other throats or to massless fields in the unwarped bulk of the Calabi-Yau orientifold. This energy transfer proceeds either by Hawking radiation from the black hole horizon in the heated throat or, at later times, by the decay of throat-localized Kaluza-Klein states. In both cases, we calculate in a 10d setup the energy transfer rate (respectively decay rate) as a function of the AdS scales of the throats and of their relative distance. Compared to existing results based on 5d models, we find a significant suppression of the energy transfer rates if the size of the embedding Calabi-Yau orientifold is much larger than the AdS radii of the throats. This effect can be partially compensated by a small distance between the throats. These results are relevant, e.g., for the analysis of reheating after brane inflation. Our calculation employs the dual gauge theory picture in which each throat is described by a strongly coupled 4d gauge theory, the degrees of freedom of which are localized at a certain position in the compact space.Comment: 25 pages; a comment adde

    Family Unification on an Orbifold

    Full text link
    We construct a family-unified model on a Z_2xZ_2 orbifold in five dimensions. The model is based on a supersymmetric SU(7) gauge theory. The gauge group is broken by orbifold boundary conditions to a product of grand unified SU(5) and SU(2)xU(1) flavor symmetry. The structure of Yukawa matrices is generated by an interplay between spontaneous breaking of flavor symmetry and geometric factors arising due to field localization in the extra dimension.Comment: 13 page
    corecore