174 research outputs found

    Sequences Sufficient for Programming Imprinted Germline DNA Methylation Defined

    Get PDF
    Epigenetic marks are fundamental to normal development, but little is known about signals that dictate their placement. Insights have been provided by studies of imprinted loci in mammals, where monoallelic expression is epigenetically controlled. Imprinted expression is regulated by DNA methylation programmed during gametogenesis in a sex-specific manner and maintained after fertilization. At Rasgrf1 in mouse, paternal-specific DNA methylation on a differential methylation domain (DMD) requires downstream tandem repeats. The DMD and repeats constitute a binary switch regulating paternal-specific expression. Here, we define sequences sufficient for imprinted methylation using two transgenic mouse lines: One carries the entire Rasgrf1 cluster (RC); the second carries only the DMD and repeats (DR) from Rasgrf1. The RC transgene recapitulated all aspects of imprinting seen at the endogenous locus. DR underwent proper DNA methylation establishment in sperm and erasure in oocytes, indicating the DMD and repeats are sufficient to program imprinted DNA methylation in germlines. Both transgenes produce a DMD-spanning pit-RNA, previously shown to be necessary for imprinted DNA methylation at the endogenous locus. We show that when pit-RNA expression is controlled by the repeats, it regulates DNA methylation in cis only and not in trans. Interestingly, pedigree history dictated whether established DR methylation patterns were maintained after fertilization. When DR was paternally transmitted followed by maternal transmission, the unmethylated state that was properly established in the female germlines could not be maintained. This provides a model for transgenerational epigenetic inheritance in mice

    HACE1 deficiency causes an autosomal recessive neurodevelopmental syndrome

    Get PDF
    Background: The genetic etiology of neurodevelopmental defects is extremely diverse, and the lack of distinctive phenotypic features means that genetic criteria are often required for accurate diagnostic classification. We aimed to identify the causative genetic lesions in two families in which eight affected individuals displayed variable learning disability, spasticity and abnormal gait. Methods: Autosomal recessive inheritance was suggested by consanguinity in one family and by sibling recurrences with normal parents in the second. Autozygosity mapping and exome sequencing, respectively, were used to identify the causative gene. Results: In both families, biallelic loss-of-function mutations in HACE1 were identified. HACE1 is an E3 ubiquitin ligase that regulates the activity of cellular GTPases, including Rac1 and members of the Rab family. In the consanguineous family, a homozygous mutation p.R219* predicted a truncated protein entirely lacking its catalytic domain. In the other family, compound heterozygosity for nonsense mutation p.R748* and a 20-nt insertion interrupting the catalytic HECT domain was present; Western analysis of patient cells revealed an absence of detectable HACE1 protein. Conclusion: HACE1 mutations underlie a new autosomal recessive neurodevelopmental disorder. Previous studies have implicated HACE1 as a tumour suppressor gene; however, since cancer predisposition was not observed either in homozygous or heterozygous mutation carriers, this concept may require re-evaluation

    The Msx1 Homeoprotein Recruits G9a Methyltransferase to Repressed Target Genes in Myoblast Cells

    Get PDF
    Although the significance of lysine modifications of core histones for regulating gene expression is widely appreciated, the mechanisms by which these modifications are incorporated at specific regulatory elements during cellular differentiation remains largely unknown. In our previous studies, we have shown that in developing myoblasts the Msx1 homeoprotein represses gene expression by influencing the modification status of chromatin at its target genes. We now show that genomic binding by Msx1 promotes enrichment of the H3K9me2 mark on repressed target genes via recruitment of G9a histone methyltransferase, the enzyme responsible for catalyzing this histone mark. Interaction of Msx1 with G9a is mediated via the homeodomain and is required for transcriptional repression and regulation of cellular differentiation, as well as enrichment of the H3K9me2 mark in proximity to Msx1 binding sites on repressed target genes in myoblast cells as well as the developing limb. We propose that regulation of chromatin status by Msx1 recruitment of G9a and other histone modifying enzymes to regulatory regions of target genes represents an important means of regulating the gene expression during development

    Genome-wide association study of bronchopulmonary dysplasia: a potential role for variants near the CRP gene

    Get PDF
    Bronchopulmonary dysplasia (BPD), the main consequence of prematurity, has a significant heritability, but little is known about predisposing genes. The aim of this study was to identify gene loci predisposing infants to BPD. The initial genome-wide association study (GWAS) included 174 Finnish preterm infants of gestational age 24-30 weeks. Thereafter, the most promising single-nucleotide polymorphisms (SNPs) associated with BPD were genotyped in both Finnish (n = 555) and non-Finnish (n = 388) replication cohorts. Finally, plasma CRP levels from the first week of life and the risk of BPD were assessed. SNP rs11265269, flanking the CRP gene, showed the strongest signal in GWAS (odds ratio [ OR] 3.2, p = 3.4 x 10(-6)). This association was nominally replicated in Finnish and French African populations. A number of other SNPs in the CRP region, including rs3093059, had nominal associations with BPD. During the first week of life the elevated plasma levels of CRP predicted the risk of BPD (OR 3.4, p = 2.9 x 10(-4)) and the SNP rs3093059 associated nominally with plasma CRP levels. Finally, SNP rs11265269 was identified as a risk factor of BPD (OR 1.8, p = 5.3 x 10(-5)), independently of the robust antenatal risk factors. As such, in BPD, a potential role for variants near CRP gene is proposed

    Genome-wide association study of bronchopulmonary dysplasia : a potential role for variants near the CRP gene

    Get PDF
    Bronchopulmonary dysplasia (BPD), the main consequence of prematurity, has a significant heritability, but little is known about predisposing genes. The aim of this study was to identify gene loci predisposing infants to BPD. The initial genome-wide association study (GWAS) included 174 Finnish preterm infants of gestational age 24-30 weeks. Thereafter, the most promising single-nucleotide polymorphisms (SNPs) associated with BPD were genotyped in both Finnish (n = 555) and non-Finnish (n = 388) replication cohorts. Finally, plasma CRP levels from the first week of life and the risk of BPD were assessed. SNP rs11265269, flanking the CRP gene, showed the strongest signal in GWAS (odds ratio [ OR] 3.2, p = 3.4 x 10(-6)). This association was nominally replicated in Finnish and French African populations. A number of other SNPs in the CRP region, including rs3093059, had nominal associations with BPD. During the first week of life the elevated plasma levels of CRP predicted the risk of BPD (OR 3.4, p = 2.9 x 10(-4)) and the SNP rs3093059 associated nominally with plasma CRP levels. Finally, SNP rs11265269 was identified as a risk factor of BPD (OR 1.8, p = 5.3 x 10(-5)), independently of the robust antenatal risk factors. As such, in BPD, a potential role for variants near CRP gene is proposed.Peer reviewe

    Effects of Hepatitis B Virus S Protein Exposure on Sperm Membrane Integrity and Functions

    Get PDF
    Background: Hepatitis B is a public health problem worldwide. Viral infection can affect a man’s fertility, but only scant information about the influence of hepatitis B virus (HBV) infection on sperm quality is available. The purpose of this study was to investigate the effect of hepatitis B virus S protein (HBs) on human sperm membrane integrity and functions. Methods/Principal Findings: Reactive oxygen species (ROS), lipid peroxidation (LP), total antioxidant capacity (TAC) and phosphatidylserine (PS) externalization were determined. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays and flow cytometric analyses were performed. (1) After 3 h incubation with 25 mg/ml of HBs, the average rates of ROS positive cells, annexin V–positive/propidium iodide (PI)-negative cells, Caspases-3,-8,-9 positive cells and TUNEL-positive cells were significantly increased in the test groups as compared to those in the control groups, while TAC level was decreased when compared with the control. The level of malondialdehyde (MDA) in the sperm cells exposed to 50 mg/ml of HBs for 3 h was significantly higher than that in the control (P,0.05–0.01). (2) HBs increased the MDA levels and the numbers of ROS positive cells, annexin V–positive/PI-negative cells, caspases-3,-8,-9 positive cells and TUNEL-positive cells in a dose-dependent manner. (3) HBs monoclonal antibody (MAb) and N-Acetylcysteine (NAC) reduced the number of ROS-positive sperm cells. (4) HBs decreased the TAC levels in sperm cells in a dose-dependent manner. Conclusion: HBs exposure could lead to ROS generation, lipid peroxidation, TAC reduction, PS externalization, activation o

    ISL1 Directly Regulates FGF10 Transcription during Human Cardiac Outflow Formation

    Get PDF
    The LIM homeodomain gene Islet-1 (ISL1) encodes a transcription factor that has been associated with the multipotency of human cardiac progenitors, and in mice enables the correct deployment of second heart field (SHF) cells to become the myocardium of atria, right ventricle and outflow tract. Other markers have been identified that characterize subdomains of the SHF, such as the fibroblast growth factor Fgf10 in its anterior region. While functional evidence of its essential contribution has been demonstrated in many vertebrate species, SHF expression of Isl1 has been shown in only some models. We examined the relationship between human ISL1 and FGF10 within the embryonic time window during which the linear heart tube remodels into four chambers. ISL1 transcription demarcated an anatomical region supporting the conserved existence of a SHF in humans, and transcription factors of the GATA family were co-expressed therein. In conjunction, we identified a novel enhancer containing a highly conserved ISL1 consensus binding site within the FGF10 first intron. ChIP and EMSA demonstrated its direct occupation by ISL1. Transcription mediated by ISL1 from this FGF10 intronic element was enhanced by the presence of GATA4 and TBX20 cardiac transcription factors. Finally, transgenic mice confirmed that endogenous factors bound the human FGF10 intronic enhancer to drive reporter expression in the developing cardiac outflow tract. These findings highlight the interest of examining developmental regulatory networks directly in human tissues, when possible, to assess candidate non-coding regions that may be responsible for congenital malformations

    Preterm infants have significantly longer telomeres than their term born counterparts

    Get PDF
    There are well-established morbidities associated with preterm birth including respiratory, neurocognitive and developmental disorders. However several others have recently emerged that characterise an `aged' phenotype in the preterm infant by term-equivalent age. These include hypertension, insulin resistance and altered body fat distribution. Evidence shows that these morbidities persist into adult life, posing a significant public health concern. In this study, we measured relative telomere length in leukocytes as an indicator of biological ageing in 25 preterm infants at term equivalent age. Comparing our measurements with those from 22 preterm infants sampled at birth and from 31 term-born infants, we tested the hypothesis that by term equivalent age, preterm infants have significantly shorter telomeres (thus suggesting that they are prematurely aged). Our results demonstrate that relative telomere length is highly variable in newborn infants and is significantly negatively correlated with gestational age and birth weight in preterm infants. Further, longitudinal assessment in preterm infants who had telomere length measurements available at both birth and term age (n = 5) suggests that telomere attrition rate is negatively correlated with increasing gestational age. Contrary to our initial hypothesis however, relative telomere length was significantly shortest in the term born control group compared to both preterm groups and longest in the preterm at birth group. In addition, telomere lengths were not significantly different between preterm infants sampled at birth and those sampled at term equivalent age. These results indicate that other, as yet undetermined, factors may influence telomere length in the preterm born infant and raise the intriguing hypothesis that as preterm gestation declines, telomere attrition rate increases

    Bronchopulmonary dysplasia: clinical aspects and preventive and therapeutic strategies

    Full text link
    Abstract Background Bronchopulmonary dysplasia (BPD) is the result of a complex process in which several prenatal and/or postnatal factors interfere with lower respiratory tract development, leading to a severe, lifelong disease. In this review, what is presently known regarding BPD pathogenesis, its impact on long-term pulmonary morbidity and mortality and the available preventive and therapeutic strategies are discussed. Main body Bronchopulmonary dysplasia is associated with persistent lung impairment later in life, significantly impacting health services because subjects with BPD have, in most cases, frequent respiratory diseases and reductions in quality of life and life expectancy. Prematurity per se is associated with an increased risk of long-term lung problems. However, in children with BPD, impairment of pulmonary structures and function is even greater, although the characterization of long-term outcomes of BPD is difficult because the adults presently available to study have received outdated treatment. Prenatal and postnatal preventive measures are extremely important to reduce the risk of BPD. Conclusion Bronchopulmonary dysplasia is a respiratory condition that presently occurs in preterm neonates and can lead to chronic respiratory problems. Although knowledge about BPD pathogenesis has significantly increased in recent years, not all of the mechanisms that lead to lung damage are completely understood, which explains why therapeutic approaches that are theoretically effective have been only partly satisfactory or useless and, in some cases, potentially negative. However, prevention of prematurity, systematic use of nonaggressive ventilator measures, avoiding supraphysiologic oxygen exposure and administration of surfactant, caffeine and vitamin A can significantly reduce the risk of BPD development. Cell therapy is the most fascinating new measure to address the lung damage due to BPD. It is desirable that ongoing studies yield positive results to definitively solve a major clinical, social and economic problem
    corecore