285 research outputs found
Organic four‐electron redox systems based on bipyridine and phenanthroline carbene architectures
Novel organic redox systems that display multistage redox behaviour are highly sought-after for a series of applications such as organic batteries or electrochromic materials. Here we describe a simple strategy to transfer well-known two-electron redox active bipyridine and phenanthroline architectures into novel strongly reducing four-electron redox systems featuring fully reversible redox events with up to five stable oxidation states. We give spectroscopic and structural insight into the changes involved in the redox-events and present characterization data on all isolated oxidation states. The redox-systems feature strong UV/Vis/NIR polyelectrochromic properties such as distinct strong NIR absorptions in the mixed valence states. Two-electron charge–discharge cycling studies indicate high electrochemical stability at strongly negative potentials, rendering the new redox architectures promising lead structures for multi-electron anolyte materials
Driver Drowsiness Immediately before Crashes – A Comparative Investigation of EEG Pattern Recognition
Periodogram and other spectral power estimation methods are established in quantitative EEG analysis. Their outcome in case of drowsy subjects fulfilling a sustained attention task is difficult to interpret. Two novel kind of EEG analysis based on pattern recognition were proposed recently, namely the microsleep (MS) and the alpha burst (AB) pattern recognition. We compare both methods by applying them to the same experimental data and relating their output variables to two independent variables of driver drowsiness. The latter was an objective lane tracking performance variable and the first was a subjective variable of self-experienced sleepiness. Results offer remarkable differences between both EEG analysis methodologies. The expected increase with time since sleep as well as with time on task, which also exhibited in both independent variables, was not identified after applying AB recognition. The EEG immediately before fatigue related crashes contained both patterns. MS patterns were remarkably more frequent before crashes; almost every crash (98.5 %) was preceded by MS patterns, whereas less than 64 % of all crashes had AB patterns within a 10 sec pre-crash interval
Can Frequency Domain Heart Rate Measures Detect Impaired Driver Performance?
An overnight driving simulation scenario with partial sleep deprivation was utilized to induce driver performance impairment. Heart rate (HR) was recorded over the entire experiment; frequency domain HR measures were derived and correlated to variation of lane deviation (VLD), a driving performance measure, and to the driver\u27s state, which was estimated by the Karolinska Sleepiness Scale (KSS). The aim of this study is to evaluate whether frequency domain heart rate measures can be used to detect impaired driver performance as well as reduced driver state. We generalize the concept of the conventional frequency domain HR measures – namely the very-low frequency (VLF), low frequency (LF) band and high frequency (HF) band – into finer-grained frequency bands of 0.02 Hz width. These newly defined frequency bands show a more detailed correlation to driving performance and to driver sleepiness state, taking subjectspecific differences into account
Electron effective mass in Sn-doped monoclinic single crystal -gallium oxide determined by mid-infrared optical Hall effect
The isotropic average conduction band minimum electron effective mass in
Sn-doped monoclinic single crystal -GaO is experimentally
determined by mid-infrared optical Hall effect to be
combining investigations on () and () surface cuts. This result
falls within the broad range of values predicted by theoretical calculations
for undoped -GaO. The result is also comparable to recent
density functional calculations using the
Gaussian-attenuation-Perdue-Burke-Ernzerhof hybrid density functional, which
predict an average effective mass of (arXiv:1704.06711
[cond-mat.mtrl-sci]). Within our uncertainty limits we detect no anisotropy for
the electron effective mass, which is consistent with most previous theoretical
calculations. We discuss upper limits for possible anisotropy of the electron
effective mass parameter from our experimental uncertainty limits, and we
compare our findings with recent theoretical results
Arrival time and intensity binning at unprecedented repetition rates
Understanding dynamics on ultrafast timescales enables unique and new insights
into important processes in the materials and life sciences. In this respect,
the fundamental pump-probe approach based on ultra-short photon pulses aims at
the creation of stroboscopic movies. Performing such experiments at one of the
many recently established accelerator-based 4th-generation light sources such
as free-electron lasers or superradiant THz sources allows an enormous
widening of the accessible parameter space for the excitation and/or probing
light pulses. Compared to table-top devices, critical issues of this type of
experiment are fluctuations of the timing between the accelerator and external
laser systems and intensity instabilities of the accelerator-based photon
sources. Existing solutions have so far been only demonstrated at low
repetition rates and/or achieved a limited dynamic range in comparison to
table-top experiments, while the 4th generation of accelerator-based light
sources is based on superconducting radio-frequency technology, which enables
operation at MHz or even GHz repetition rates. In this article, we present the
successful demonstration of ultra-fast accelerator-laser pump-probe
experiments performed at an unprecedentedly high repetition rate in the few-
hundred-kHz regime and with a currently achievable optimal time resolution of
13 fs (rms). Our scheme, based on the pulse-resolved detection of multiple
beam parameters relevant for the experiment, allows us to achieve an excellent
sensitivity in real-world ultra-fast experiments, as demonstrated for the
example of THz-field-driven coherent spin precession
Curcumin Mitigates Immune-Induced Epithelial Barrier Dysfunction by Campylobacter jejuni
Campylobacter jejuni (C. jejuni) is the most common cause of foodborne gastroenteritis worldwide. The bacteria induce diarrhea and inflammation by invading the intestinal epithelium. Curcumin is a natural polyphenol from turmeric rhizome of Curcuma longa, a medical plant, and is commonly used in curry powder. The aim of this study was the investigation of the protective effects of curcumin against immune-induced epithelial barrier dysfunction in C. jejuni infection. The indirect C. jejuni-induced barrier defects and its protection by curcumin were analyzed in co-cultures with HT-29/B6-GR/MR epithelial cells together with differentiated THP-1 immune cells. Electrophysiological measurements revealed a reduction in transepithelial electrical resistance (TER) in infected co-cultures. An increase in fluorescein (332 Da) permeability in co-cultures as well as in the germ-free IL-10-/- mouse model after C. jejuni infection was shown. Curcumin treatment attenuated the C. jejuni-induced increase in fluorescein permeability in both models. Moreover, apoptosis induction, tight junction redistribution, and an increased inflammatory response-represented by TNF-α, IL-1β, and IL-6 secretion-was observed in co-cultures after infection and reversed by curcumin. In conclusion, curcumin protects against indirect C. jejuni-triggered immune-induced barrier defects and might be a therapeutic and protective agent in patients
Catalyst-Free Trifluoromethoxylation of Silyl Enol Ethers and Allyl Silanes with Bis(trifluoromethyl)peroxide
Radical trifluoromethoxylation is an attractive approach to prepare compounds featuring the important OCF3 group, however most existing methods have focused on aromatic substrates. Here, we report novel methodologies with alkenyl substrates employing bis(trifluoromethyl)peroxide (BTMP) as a practical and comparatively atom economical trifluoromethoxylating reagent. With silyl enol ether substrates, switching reaction solvent allows for the synthesis of either α-(trifluoromethoxy)ketone products or unprecedented alkenyl-OCF3 species. Furthermore, allyl silanes have been employed as substrates for the first time, affording allyl(trifluoromethyl)ether products in good yields. In each case, the methods operate at room temperature without large excesses of the alkene substrate while, in contrast to previous radical trifluoromethoxylation reactions, no catalyst, light or other activators are required
Ultrafast High-Field THz beamline at X-ray FEL
THz sources at FLASH utilize spent electron beam from a soft X-ray FEL to generate very intense (up to 150µJ), tunable frequency (1-300THz) and ultrafast narrowband (~10%) THz pulses, which are naturally synchronized to soft X-ray pulses [1]. This unique combination allows for wide range of element specific pump-probe experiments in physics, material science and biology. Here we discuss the unique features of the FLASH THz pulses and the accelerator source that bring along a set of challenges in the diagnostics of their key parameters: pulse energy, spectral, temporal and spatial profiles.VII International School and Conference on Photonics : PHOTONICA2019 : Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers; August 26-30; Belgrad
THz-Driven Coherent Magnetization Dynamics in a Labyrinth Domain State
Terahertz (THz) light pulses can be used for an ultrafast coherent
manipulation of the magnetization. Driving the magnetization at THz frequencies
is currently the fastest way of writing magnetic information in ferromagnets.
Using time-resolved resonant magnetic scattering, we gain new insights to the
THz-driven coherent magnetization dynamics on nanometer length scales. We
observe ultrafast demagnetization and coherent magnetization oscillations that
are governed by a time-dependent damping. This damping is determined by the
interplay of lattice heating and magnetic anisotropy reduction revealing an
upper speed limit for THz-induced magnetization switching. We show that in the
presence of nanometer-sized magnetic domains, the ultrafast magnetization
oscillations are associated with a correlated beating of the domain walls. The
overall domain structure thereby remains largely unaffected which highlights
the applicability of THz-induced switching on the nanoscale.Comment: 10 pages, 8 figures and 54 reference
- …