Book of abstracts

PHOTONICA2019

The Seventh International School and Conference on Photonics, 26 August – 30 August 2019, Belgrade, Serbia

& Machine Learning with Photonics Symposium (ML-Photonica 2019)

Editors: Milica Matijević, Marko Krstić and Petra Beličev

Belgrade, 2019

ABSTRACTS OF TUTORIAL, KEYNOTE, INVITED LECTURES, PROGRESS REPORTS AND CONTRIBUTED PAPERS

of

The Seventh International School and Conference on Photonics PHOTONICA2019, 26 August – 30 August 2019, Belgrade, Serbia

and Machine Learning with Photonics Symposium

> and ESUO Regional Workshop

Editors Milica Matijević, Marko Krstić and Petra Beličev

Technical Assistance Danka Stojanović and Goran Gligorić

Publisher Vinča Institute of Nuclear Sciences Mike Petrovića Alasa 12-14, P.O. Box 522 11000 Belgrade, Serbia

Printed by Serbian Academy of Sciences and Arts

Number of copies 300

ISBN 978-86-7306-153-5

PHOTONICA2019 (The Seventh International School and Conference on Photonicawww.photonica.ac.rs) is organized by Vinča Institute of Nuclear Sciences, University of Belgrade (www.vinca.ac.rs), Serbian Academy of Sciences and Arts (www.sanu.ac.rs), and Optical Society of Serbia (www.ods.org.rs).

Other institutions that helped the organization of this event are: Institute of Physics Belgrade, University of Belgrade (www.ipb.ac.rs), School of Electrical Engineering, University of Belgrade (www.etf.bg.ac.rs), Institute of Chemistry, Technology and Metallurgy, University of Belgrade (www.ihtm.bg.ac.rs), Faculty of Technical Sciences, University of Novi Sad (www.ftn.uns.ac.rs), Faculty of Physics, University of Belgrade (www.ff.bg.ac.rs), and Faculty of Biology, University of Belgrade (www.bio.bg.ac.rs). Joint event "Machine learning with Photonics Symposium" has been co-organized with programme partners H2020-RISE-CARDIALLY, H2020 – MULTIPLY and H2020-EID-FONTE.

PHOTONICA2019 is organized under auspices and with support of the Ministry of Education, Science and Technological Development, Republic of Serbia (www.mpn.gov.rs). PHOTONICA2019 is supported and recognized by OSA - The Optical Society (www.osa.org), Integrated Initiative of European Laser Research Infrastructures Laser Lab-Europe (www.laserlab-europe.eu) and European Physical Society (www.eps.org).

The support of the sponsors of PHOTONICA2019 is gratefully acknowledged:

Ultrafast High-Field THz beamline at X-ray FEL

R. Pan¹, E. Zapolnova¹, T. Golz¹, M. Rabasovic², A. Krmpot², J. Petrovic^{1,3}, M. Gensch⁴, and <u>N. Stojanovic¹</u> ¹DESY, Hamburg, Germany ²Institute of Physics Belgrade, Belgrade, Serbia ³Vinca Institute of Nuclear Sciences, Belgrade, Serbia ³Institute of Physics, Belgrade, Serbia ⁴Technical University of Berlin, Berlin, Germany e-mail: nikola.stojanovic@desv.de

THz sources at FLASH utilize spent electron beam from a soft X-ray FEL to generate very intense (up to 150μ J), tunable frequency (1-300THz) and ultrafast narrowband (~10%) THz pulses, which are naturally synchronized to soft X-ray pulses [1]. This unique combination allows for wide range of element specific pump-probe experiments in physics, material science and biology.

Here we discuss the unique features of the FLASH THz pulses and the accelerator source that bring along a set of challenges in the diagnostics of their key parameters: pulse energy, spectral, temporal and spatial profiles.

REFERENCES [1] R. Pan et al., J. Synchrotron Rad. 26, (2019).