647 research outputs found
Young starless cores embedded in the magnetically dominated Pipe Nebula
The Pipe Nebula is a massive, nearby dark molecular cloud with a low
star-formation efficiency which makes it a good laboratory to study the very
early stages of the star formation process. The Pipe Nebula is largely
filamentary, and appears to be threaded by a uniform magnetic field at scales
of few parsecs, perpendicular to its main axis. The field is only locally
perturbed in a few regions, such as the only active cluster forming core B59.
The aim of this study is to investigate primordial conditions in low-mass
pre-stellar cores and how they relate to the local magnetic field in the cloud.
We used the IRAM 30-m telescope to carry out a continuum and molecular survey
at 3 and 1 mm of early- and late-time molecules toward four selected starless
cores inside the Pipe Nebula. We found that the dust continuum emission maps
trace better the densest regions than previous 2MASS extinction maps, while
2MASS extinction maps trace better the diffuse gas. The properties of the cores
derived from dust emission show average radii of ~0.09 pc, densities of
~1.3x10^5 cm^-3, and core masses of ~2.5 M_sun. Our results confirm that the
Pipe Nebula starless cores studied are in a very early evolutionary stage, and
present a very young chemistry with different properties that allow us to
propose an evolutionary sequence. All of the cores present early-time molecular
emission, with CS detections toward all the sample. Two of them, Cores 40 and
109, present strong late-time molecular emission. There seems to be a
correlation between the chemical evolutionary stage of the cores and the local
magnetic properties that suggests that the evolution of the cores is ruled by a
local competition between the magnetic energy and other mechanisms, such as
turbulence.Comment: Accepted for publication in ApJ. 15 pages, 5 figures, 9 table
Imaging of a Transitional Disk Gap in Reflected Light: Indications of Planet Formation Around the Young Solar Analog LkCa 15
We present H- and Ks-band imaging data resolving the gap in the transitional
disk around LkCa 15, revealing the surrounding nebulosity. We detect sharp
elliptical contours delimiting the nebulosity on the inside as well as the
outside, consistent with the shape, size, ellipticity, and orientation of
starlight reflected from the far-side disk wall, whereas the near-side wall is
shielded from view by the disk's optically thick bulk. We note that
forward-scattering of starlight on the near-side disk surface could provide an
alternate interpretation of the nebulosity. In either case, this discovery
provides confirmation of the disk geometry that has been proposed to explain
the spectral energy distributions (SED) of such systems, comprising an
optically thick outer disk with an inner truncation radius of ~46 AU enclosing
a largely evacuated gap. Our data show an offset of the nebulosity contours
along the major axis, likely corresponding to a physical pericenter offset of
the disk gap. This reinforces the leading theory that dynamical clearing by at
least one orbiting body is the cause of the gap. Based on evolutionary models,
our high-contrast imagery imposes an upper limit of 21 Jupiter masses on
companions at separations outside of 0.1" and of 13 Jupiter masses outside of
0.2". Thus, we find that a planetary system around LkCa 15 is the most likely
explanation for the disk architecture.Comment: 5 pages, 4 figures, accepted for publication in ApJ Letters. Minor
change to Figure
The Structure of Pre-transitional Protoplanetary Disks I: Radiative Transfer Modeling of the Disk+Cavity in the PDS 70 system
Through detailed radiative transfer modeling, we present a disk+cavity model
to simultaneously explain both the SED and Subaru H-band polarized light
imaging for the pre-transitional protoplanetary disk PDS 70. Particularly, we
are able to match not only the radial dependence, but also the absolute scale,
of the surface brightness of the scattered light. Our disk model has a cavity
65 AU in radius, which is heavily depleted of sub-micron-sized dust grains, and
a small residual inner disk which produces a weak but still optically thick NIR
excess in the SED. To explain the contrast of the cavity edge in the Subaru
image, a factor of ~1000 depletion for the sub-micron-sized dust inside the
cavity is required. The total dust mass of the disk may be on the order of 1e-4
M_sun, only weakly constrained due to the lack of long wavelength observations
and the uncertainties in the dust model. The scale height of the
sub-micron-sized dust is ~6 AU at the cavity edge, and the cavity wall is
optically thick in the vertical direction at H-band. PDS 70 is not a member of
the class of (pre-)transitional disks identified by Dong et al. (2012), whose
members only show evidence of the cavity in the millimeter-sized dust but not
the sub-micron-sized dust in resolved images. The two classes of
(pre-)transitional disks may form through different mechanisms, or they may
just be at different evolution stages in the disk clearing process.Comment: 28 pages (single column), 7 figures, 1 table, ApJ accepte
A large geometric distortion in the first photointermediate of rhodopsin, determined by double-quantum solid-state NMR
Double-quantum magic-angle-spinning NMR experiments were performed on 11,12-C-13(2)-retinylidene-rhodopsin under illumination at low temperature, in order to characterize torsional angle changes at the C11-C12 photoisomerization site. The sample was illuminated in the NMR rotor at low temperature (similar to 120 K) in order to trap the primary photointermediate, bathorhodopsin. The NMR data are consistent with a strong torsional twist of the HCCH moiety at the isomerization site. Although the HCCH torsional twist was determined to be at least 40A degrees, it was not possible to quantify it more closely. The presence of a strong twist is in agreement with previous Raman observations. The energetic implications of this geometric distortion are discussed
Polarimetric Imaging of Large Cavity Structures in the Pre-transitional Protoplanetary Disk around PDS 70: Observations of the Disk
We present high resolution H-band polarized intensity (PI; FWHM = 0."1: 14 AU) and L'-band imaging data (FWHM = 0."11: 15 AU) of the circumstellar disk around the weak-lined T Tauri star PDS 70 in Centaurus at a radial distance of 28 AU (0."2) up to 210 AU (1."5). In both images, a giant inner gap is clearly resolvro for the first time, and the radius of the gap is approx 70 AU. Our data show that the geometric center of the disk shifts by approx 6 AU toward the minor axis. We confirm that the brown dwarf companion candidate to the north of PDS 70 is a background star based on its proper motion. As a result of SED fitting by Monte Carlo radiative transfer modeling, we infer the existence of an optically thick inner disk at a few AU. Combining our observations and modeling, we classify the disk of PDS 70 as a pre-transitional disk. Furthermore, based on the analysis of L'-band imaging data, we put an upper limit mass of companions at approx 30 to approx 50M(sub J) within the gap. Taking account of the presence of the large and sharp gap, we suggest that the gap could be formed by dynamical interactions of sub-stellar companions or multiple unseen giant planets in the gap
SEEDS direct imaging of the RV-detected companion to V450 Andromedae, and characterization of the system
We report the direct imaging detection of a low-mass companion to a young,
moderately active star V450 And, that was previously identified with the radial
velocity method. The companion was found in high-contrast images obtained with
the Subaru Telescope equipped with the HiCIAO camera and AO188 adaptive optics
system. From the public ELODIE and SOPHIE archives we extracted available
high-resolution spectra and radial velocity (RV) measurements, along with RVs
from the Lick planet search program. We combined our multi-epoch astrometry
with these archival, partially unpublished RVs, and found that the companion is
a low-mass star, not a brown dwarf, as previously suggested. We found the
best-fitting dynamical masses to be and
M. We also performed spectral analysis of
the SOPHIE spectra with the iSpec code. The Hipparcos time-series photometry
shows a periodicity of d, which is also seen in SOPHIE spectra as an
RV modulation of the star A. We interpret it as being caused by spots on the
stellar surface, and the star to be rotating with the given period. From the
rotation and level of activity, we found that the system is
Myr old, consistent with an isochrone analysis ( Myr). This
work may serve as a test case for future studies of low-mass stars, brown
dwarfs and exoplanets by combination of RV and direct imaging data.Comment: 15 pages, 9 figures, 7 tables, to appear in Ap
Direct Imaging of Fine Structures in Giant Planet Forming Regions of the Protoplanetary Disk around AB Aurigae
We report high-resolution 1.6 \micron polarized intensity () images of
the circumstellar disk around the Herbig Ae star AB Aur at a radial distance of
22 AU () up to 554 AU (3.85), which have been obtained by the
high-contrast instrument HiCIAO with the dual-beam polarimetry. We revealed
complicated and asymmetrical structures in the inner part (140 AU) of
the disk, while confirming the previously reported outer ( 200 AU)
spiral structure. We have imaged a double ring structure at 40 and
100 AU and a ring-like gap between the two. We found a significant
discrepancy of inclination angles between two rings, which may indicate that
the disk of AB Aur is warped. Furthermore, we found seven dips (the typical
size is 45 AU or less) within two rings as well as three prominent
peaks at 40 AU. The observed structures, including a bumpy double ring, a
ring-like gap, and a warped disk in the innermost regions, provide essential
information for understanding the formation mechanism of recently detected
wide-orbit ( 20 AU) planets.Comment: 12 pages, 3 figure
Subaru Imaging of Asymmetric Features in a Transitional Disk in Upper Scorpius
We report high-resolution (0.07 arcsec) near-infrared polarized intensity
images of the circumstellar disk around the star 2MASS J16042165-2130284
obtained with HiCIAO mounted on the Subaru 8.2 m telescope. We present our
-band data, which clearly exhibits a resolved, face-on disk with a large
inner hole for the first time at infrared wavelengths. We detect the
centrosymmetric polarization pattern in the circumstellar material as has been
observed in other disks. Elliptical fitting gives the semimajor axis, semiminor
axis, and position angle (P.A.) of the disk as 63 AU, 62 AU, and -14
, respectively. The disk is asymmetric, with one dip located at P.A.s
of . Our observed disk size agrees well with a previous study
of dust and CO emission at submillimeter wavelength with Submillimeter Array.
Hence, the near-infrared light is interpreted as scattered light reflected from
the inner edge of the disk. Our observations also detect an elongated arc (50
AU) extending over the disk inner hole. It emanates at the inner edge of the
western side of the disk, extending inward first, then curving to the
northeast. We discuss the possibility that the inner hole, the dip, and the arc
that we have observed may be related to the existence of unseen bodies within
the disk.Comment: 21 pages, 3 figures, published 2012 November 7 by ApJL, typo
correcte
- …