66 research outputs found

    Histone deacetylase inhibitors suppress mechanical stress-induced expression of RUNX-2 and ADAMTS-5 through the inhibition of the MAPK signaling pathway in cultured human chondrocytes

    Get PDF
    Objective: To investigate the inhibitory effects and the regulatory mechanisms of histone deacetylase (HDAC) inhibitors on mechanical stress-induced gene expression of runt-related transcription factor (RUNX)-2 and a disintegrin and metalloproteinase with thrombospondin motif (ADAMTS)-5 in human chondrocytes. Methods: Human chondrocytes were seeded in stretch chambers at a concentration of 5 x 10(4) cells/chamber. Cells were pre-incubated with or without HDAC inhibitors (MS-275 or trichostatin A; TSA) for 12 h, followed by uniaxial cyclic tensile strain (CTS) (0.5 Hz, 10% elongation), which was applied for 30 min using the ST-140-10 system (STREX, Osaka, Japan). Total RNA was extracted and the expression of RUNX-2, ADAMTS-5, matrix metalloproteinase (MMP)-3, and MMP-13 at the mRNA and protein levels were examined by real-time polymerase chain reaction (PCR) and immunocytochemistry, respectively. The activation of diverse mitogen-activated protein kinase (MAPK) pathways with or without HDAC inhibitors during CTS was examined by western blotting. Results: HDAC inhibitors (TSA: 10 nM, MS-275: 100 nM) suppressed CTS-induced expression of RUNX-2, ADAMTS-5, and MMP-3 at both the mRNA and protein levels within 1 h. CTS-induced activation of p38 MAPK (p38), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (INK) MAPKs was downregulated by both HDAC inhibitors. Conclusion: The CTS-induced expression of RUNX-2 and ADAMTS-5 was suppressed by HDAC inhibitors via the inhibition of the MAPK pathway activation in human chondrocytes. The results of the current study suggested a novel therapeutic role for HDAC inhibitors against degenerative joint disease such as osteoarthritis

    Functional Analysis of Human Hematopoietic Stem Cell Gene Expression Using Zebrafish

    Get PDF
    Although several reports have characterized the hematopoietic stem cell (HSC) transcriptome, the roles of HSC-specific genes in hematopoiesis remain elusive. To identify candidate regulators of HSC fate decisions, we compared the transcriptome of human umbilical cord blood and bone marrow CD34(+)CD33(βˆ’)CD38(βˆ’)Rho(lo)c-kit(+) cells, enriched for hematopoietic stem/progenitor cells with CD34(+)CD33(βˆ’)CD38(βˆ’)Rho(hi) cells, enriched in committed progenitors. We identified 277 differentially expressed transcripts conserved in these ontogenically distinct cell sources. We next performed a morpholino antisense oligonucleotide (MO)-based functional screen in zebrafish to determine the hematopoietic function of 61 genes that had no previously known function in HSC biology and for which a likely zebrafish ortholog could be identified. MO knock down of 14/61 (23%) of the differentially expressed transcripts resulted in hematopoietic defects in developing zebrafish embryos, as demonstrated by altered levels of circulating blood cells at 30 and 48 h postfertilization and subsequently confirmed by quantitative RT-PCR for erythroid-specific hbae1 and myeloid-specific lcp1 transcripts. Recapitulating the knockdown phenotype using a second MO of independent sequence, absence of the phenotype using a mismatched MO sequence, and rescue of the phenotype by cDNA-based overexpression of the targeted transcript for zebrafish spry4 confirmed the specificity of MO targeting in this system. Further characterization of the spry4-deficient zebrafish embryos demonstrated that hematopoietic defects were not due to more widespread defects in the mesodermal development, and therefore represented primary defects in HSC specification, proliferation, and/or differentiation. Overall, this high-throughput screen for the functional validation of differentially expressed genes using a zebrafish model of hematopoiesis represents a major step toward obtaining meaningful information from global gene profiling of HSCs

    Similar expression to FGF (Sef) inhibits fibroblast growth factor-induced tumourigenic behaviour in prostate cancer cells and is downregulated in aggressive clinical disease.

    Get PDF
    BACKGROUND: The fibroblast growth factor (FGF) axis is an important mitogenic stimulus in prostate carcinogenesis. We have previously reported that transcript level of human similar expression to FGF (hSef), a key regulator of this pathway, is downregulated in clinical prostate cancer. In this study we further analysed the role of hSef in prostate cancer. METHODS: hSef function was studied in in vitro and in vivo prostate cancer models using stable over-expression clones. Protein expression of hSef was studied in a comprehensive tissue microarray. RESULTS: Stable over-expression of hSef resulted in reduced in vitro cancer cell proliferation, migration and invasive potential. In an in vivo xenograft model, the expression of hSef significantly retarded prostate tumour growth as compared with empty vector (P=0.03) and non-transfected (P=0.0001) controls. Histological examination further showed a less invasive tumour phenotype and reduced numbers of proliferating cells (P=0.0002). In signalling studies, hSef inhibited FGF-induced ERK phosphorylation, migration to the nucleus and activation of a reporter gene. Constitutively active Ras, however, was able to reverse these effects, suggesting that hSef exerts an effect either above or at the level of Ras in prostate cancer cells. In a large tissue microarray, we observed a significant loss of hSef protein in high-grade (P<0.0001) and metastatic (P<0.0001) prostate cancer. CONCLUSIONS: Considered together, the role of hSef in attenuating FGF signalling and evidence of downregulation in advanced tumours argue strongly for a tumour suppressor function in human prostate cancer

    Negative-feedback regulation of FGF signalling by DUSP6/MKP-3 is driven by ERK1/2 and mediated by Ets factor binding to a conserved site within the DUSP6/MKP-3 gene promoter

    Get PDF
    DUSP6 (dual-specificity phosphatase 6), also known as MKP-3 [MAPK (mitogen-activated protein kinase) phosphatase-3] specifically inactivates ERK1/2 (extracellular-signal-regulated kinase 1/2) in vitro and in vivo. DUSP6/MKP-3 is inducible by FGF (fibroblast growth factor) signalling and acts as a negative regulator of ERK activity in key and discrete signalling centres that direct outgrowth and patterning in early vertebrate embryos. However, the molecular mechanism by which FGFs induce DUSP6/MKP-3 expression and hence help to set ERK1/2 signalling levels is unknown. In the present study, we demonstrate, using pharmacological inhibitors and analysis of the murine DUSP6/MKP-3 gene promoter, that the ERK pathway is critical for FGF-induced DUSP6/MKP-3 transcription. Furthermore, we show that this response is mediated by a conserved binding site for the Ets (E twenty-six) family of transcriptional regulators and that the Ets2 protein, a known target of ERK signalling, binds to the endogenous DUSP6/MKP-3 promoter. Finally, the murine DUSP6/MKP-3 promoter coupled to EGFP (enhanced green fluorescent protein) recapitulates the specific pattern of endogenous DUSP6/MKP-3 mRNA expression in the chicken neural plate, where its activity depends on FGFR (FGF receptor) and MAPK signalling and an intact Ets-binding site. These findings identify a conserved Ets-factor-dependent mechanism by which ERK signalling activates DUSP6/MKP-3 transcription to deliver ERK1/2-specific negative-feedback control of FGF signalling

    The Functions of Auxilin and Rab11 in Drosophila Suggest That the Fundamental Role of Ligand Endocytosis in Notch Signaling Cells Is Not Recycling

    Get PDF
    Notch signaling requires ligand internalization by the signal sending cells. Two endocytic proteins, epsin and auxilin, are essential for ligand internalization and signaling. Epsin promotes clathrin-coated vesicle formation, and auxilin uncoats clathrin from newly internalized vesicles. Two hypotheses have been advanced to explain the requirement for ligand endocytosis. One idea is that after ligand/receptor binding, ligand endocytosis leads to receptor activation by pulling on the receptor, which either exposes a cleavage site on the extracellular domain, or dissociates two receptor subunits. Alternatively, ligand internalization prior to receptor binding, followed by trafficking through an endosomal pathway and recycling to the plasma membrane may enable ligand activation. Activation could mean ligand modification or ligand transcytosis to a membrane environment conducive to signaling. A key piece of evidence supporting the recycling model is the requirement in signaling cells for Rab11, which encodes a GTPase critical for endosomal recycling. Here, we use Drosophila Rab11 and auxilin mutants to test the ligand recycling hypothesis. First, we find that Rab11 is dispensable for several Notch signaling events in the eye disc. Second, we find that Drosophila female germline cells, the one cell type known to signal without clathrin, also do not require auxilin to signal. Third, we find that much of the requirement for auxilin in Notch signaling was bypassed by overexpression of both clathrin heavy chain and epsin. Thus, the main role of auxilin in Notch signaling is not to produce uncoated ligand-containing vesicles, but to maintain the pool of free clathrin. Taken together, these results argue strongly that at least in some cell types, the primary function of Notch ligand endocytosis is not for ligand recycling

    Coupling changes in cell shape to chromosome segregation

    Get PDF
    Animal cells undergo dramatic changes in shape, mechanics and polarity as they progress through the different stages of cell division. These changes begin at mitotic entry, with cell–substrate adhesion remodelling, assembly of a cortical actomyosin network and osmotic swelling, which together enable cells to adopt a near spherical form even when growing in a crowded tissue environment. These shape changes, which probably aid spindle assembly and positioning, are then reversed at mitotic exit to restore the interphase cell morphology. Here, we discuss the dynamics, regulation and function of these processes, and how cell shape changes and sister chromatid segregation are coupled to ensure that the daughter cells generated through division receive their fair inheritance

    Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers

    Full text link
    • …
    corecore