380 research outputs found

    Analysis of chaotic motion and its shape dependence in a generalized piecewise linear map

    Full text link
    We analyse the chaotic motion and its shape dependence in a piecewise linear map using Fujisaka's characteristic function method. The map is a generalization of the one introduced by R. Artuso. Exact expressions for diffusion coefficient are obtained giving previously obtained results as special cases. Fluctuation spectrum relating to probability density function is obtained in a parametric form. We also give limiting forms of the above quantities. Dependence of diffusion coefficient and probability density function on the shape of the map is examined.Comment: 4 pages,4 figure

    Synchronization of Coupled Systems with Spatiotemporal Chaos

    Full text link
    We argue that the synchronization transition of stochastically coupled cellular automata, discovered recently by L.G. Morelli {\it et al.} (Phys. Rev. {\bf 58 E}, R8 (1998)), is generically in the directed percolation universality class. In particular, this holds numerically for the specific example studied by these authors, in contrast to their claim. For real-valued systems with spatiotemporal chaos such as coupled map lattices, we claim that the synchronization transition is generically in the universality class of the Kardar-Parisi-Zhang equation with a nonlinear growth limiting term.Comment: 4 pages, including 3 figures; submitted to Phys. Rev.

    Phase synchronization in time-delay systems

    Get PDF
    Though the notion of phase synchronization has been well studied in chaotic dynamical systems without delay, it has not been realized yet in chaotic time-delay systems exhibiting non-phase coherent hyperchaotic attractors. In this article we report the first identification of phase synchronization in coupled time-delay systems exhibiting hyperchaotic attractor. We show that there is a transition from non-synchronized behavior to phase and then to generalized synchronization as a function of coupling strength. These transitions are characterized by recurrence quantification analysis, by phase differences based on a new transformation of the attractors and also by the changes in the Lyapunov exponents. We have found these transitions in coupled piece-wise linear and in Mackey-Glass time-delay systems.Comment: 4 pages, 3 Figures (To appear in Physical Review E Rapid Communication

    Studying Attractor Symmetries by Means of Cross Correlation Sums

    Full text link
    We use the cross correlation sum introduced recently by H. Kantz to study symmetry properties of chaotic attractors. In particular, we apply it to a system of six coupled nonlinear oscillators which was shown by Kroon et al. to have attractors with several different symmetries, and compare our results with those obtained by ``detectives" in the sense of Golubitsky et al.Comment: LaTeX file, 16 pages and 16 postscript figures; tarred, gzipped and uuencoded; submitted to 'Nonlinearity

    Fundamental scaling laws of on-off intermittency in a stochastically driven dissipative pattern forming system

    Full text link
    Noise driven electroconvection in sandwich cells of nematic liquid crystals exhibits on-off intermittent behaviour at the onset of the instability. We study laser scattering of convection rolls to characterize the wavelengths and the trajectories of the stochastic amplitudes of the intermittent structures. The pattern wavelengths and the statistics of these trajectories are in quantitative agreement with simulations of the linearized electrohydrodynamic equations. The fundamental τ3/2\tau^{-3/2} distribution law for the durations τ\tau of laminar phases as well as the power law of the amplitude distribution of intermittent bursts are confirmed in the experiments. Power spectral densities of the experimental and numerically simulated trajectories are discussed.Comment: 20 pages and 17 figure

    Infinities of stable periodic orbits in systems of coupled oscillators

    Get PDF
    We consider the dynamical behavior of coupled oscillators with robust heteroclinic cycles between saddles that may be periodic or chaotic. We differentiate attracting cycles into types that we call phase resetting and free running depending on whether the cycle approaches a given saddle along one or many trajectories. At loss of stability of attracting cycling, we show in a phase-resetting example the existence of an infinite family of stable periodic orbits that accumulate on the cycling, whereas for a free-running example loss of stability of the cycling gives rise to a single quasiperiodic or chaotic attractor

    Two-state intermittency near a symmetric interaction of saddle-node and Hopf bifurcations: a case study from dynamo theory

    Get PDF
    We consider a model of a Hopf bifurcation interacting as a codimension 2 bifurcation with a saddle-node on a limit cycle, motivated by a low-order model for magnetic activity in a stellar dynamo. This model consists of coupled interactions between a saddle-node and two Hopf bifurcations, where the saddle-node bifurcation is assumed to have global reinjection of trajectories. The model can produce chaotic behaviour within each of a pair of invariant subspaces, and also it can show attractors that are stuck-on to both of the invariant subspaces. We investigate the detailed intermittent dynamics for such an attractor, investigating the effect of breaking the symmetry between the two Hopf bifurcations, and observing that it can appear via blowout bifurcations from the invariant subspaces. We give a simple Markov chain model for the two-state intermittent dynamics that reproduces the time spent close to the invariant subspaces and the switching between the different possible invariant subspaces; this clarifies the observation that the proportion of time spent near the different subspaces depends on the average residence time and also on the probabilities of switching between the possible subspaces

    Asymptotic power law of moments in a random multiplicative process with weak additive noise

    Get PDF
    It is well known that a random multiplicative process with weak additive noise generates a power-law probability distribution. It has recently been recognized that this process exhibits another type of power law: the moment of the stochastic variable scales as a function of the additive noise strength. We clarify the mechanism for this power-law behavior of moments by treating a simple Langevin-type model both approximately and exactly, and argue this mechanism is universal. We also discuss the relevance of our findings to noisy on-off intermittency and to singular spatio-temporal chaos recently observed in systems of non-locally coupled elements.Comment: 11 pages, 9 figures, submitted to Phys. Rev.

    Absence of First-order Transition and Tri-critical Point in the Dynamic Phase Diagram of a Spatially Extended Bistable System in an Oscillating Field

    Full text link
    It has been well established that spatially extended, bistable systems that are driven by an oscillating field exhibit a nonequilibrium dynamic phase transition (DPT). The DPT occurs when the field frequency is on the order of the inverse of an intrinsic lifetime associated with the transitions between the two stable states in a static field of the same magnitude as the amplitude of the oscillating field. The DPT is continuous and belongs to the same universality class as the equilibrium phase transition of the Ising model in zero field [G. Korniss et al., Phys. Rev. E 63, 016120 (2001); H. Fujisaka et al., Phys. Rev. E 63, 036109 (2001)]. However, it has previously been claimed that the DPT becomes discontinuous at temperatures below a tricritical point [M. Acharyya, Phys. Rev. E 59, 218 (1999)]. This claim was based on observations in dynamic Monte Carlo simulations of a multipeaked probability density for the dynamic order parameter and negative values of the fourth-order cumulant ratio. Both phenomena can be characteristic of discontinuous phase transitions. Here we use classical nucleation theory for the decay of metastable phases, together with data from large-scale dynamic Monte Carlo simulations of a two-dimensional kinetic Ising ferromagnet, to show that these observations in this case are merely finite-size effects. For sufficiently small systems and low temperatures, the continuous DPT is replaced, not by a discontinuous phase transition, but by a crossover to stochastic resonance. In the infinite-system limit the stochastic-resonance regime vanishes, and the continuous DPT should persist for all nonzero temperatures

    Chaos and Synchronized Chaos in an Earthquake Model

    Full text link
    We show that chaos is present in the symmetric two-block Burridge-Knopoff model for earthquakes. This is in contrast with previous numerical studies, but in agreement with experimental results. In this system, we have found a rich dynamical behavior with an unusual route to chaos. In the three-block system, we see the appearance of synchronized chaos, showing that this concept can have potential applications in the field of seismology.Comment: To appear in Physical Review Letters (13 pages, 6 figures
    corecore