RBAFZWERY KT b %
Al

KURENAI

Kyoto University Research Information Repository

Asymptotic power law of moments in a random multiplicative

Title process with weak additive noise
Author(s) | Nakao, H
Citation | PHYSICAL REVIEW E (1998), 58(2): 1591-1600
Issue Date | 1998-08
URL http://hdl.handle.net/2433/50548
Right Copyright 1998 American Physical Society
Type Journal Article

Textversion

publisher

Kyoto University




PHYSICAL REVIEW E VOLUME 58, NUMBER 2 AUGUST 1998

Asymptotic power law of moments in a random multiplicative process with weak additive noise

Hiroya Nakao
Department of Physics, Graduate School of Sciences, Kyoto University, Kyoto 606, Japan
(Received 30 January 1998

It is well known that a random multiplicative process with weak additive noise generates a power-law
probability distribution. It has recently been recognized that this process exhibits another type of power law:
the moment of the stochastic variable scales as a function of the additive noise strength. We clarify the
mechanism for this power-law behavior of moments by treating a simple Langevin-type model both approxi-
mately and exactly, and argue that this mechanism is universal. We also discuss the relevance of our findings
to noisy on-off intermittency and to singular spatio-temporal chaos recently observed in systems of nonlocally
coupled element§S1063-651X98)10908-X]

PACS numbds): 05.40:+j, 05.45+b

I. INTRODUCTION Recently, another type of asymptotic power law was
found in the above type of stochastic processes. In previous
Power laws are observed in a wide variety of natural phepaperg 12,13, we introduced a stochastic process in order to
nomena and mathematical models. Some examples are te&plain the power law displayed by the spatial correlation
critical behavior near second-order phase transitions, Kolfunction C(r), i.e., C(r)=Cy—Cyr® for small enoughr,
mogorov’s law of fully developed turbulence, size distribu- Observed in the spatio-temporal chaotic regime of systems
tion of avalanches in models of self-organized criticality, With nonlocally coupled elements. Our explanation was
Gutenberg-Richter’s law of earthquakes, distribution of pricebased on a RMP with weak additive noise such as described
fluctuations in economic activities, and Zipf's law in linguis- above. Note, however, that the power-law correlation here is
tics. Clarifying the mechanisms for the emergence of thes@ot a direct result of the power-law tail of the PDF itself, but
power laws has long been a subject of many challenges. itis a result of the asymptotic power law of mome(8) of
The random multiplicative proces€RMP) is a well-  the stochastic variabbe as a function of the strengthof the
known mechanism leading to power-law behavior. It is aadditive noise, i.e.(x%)=Gy+G;s"®. This gives another
stochastic process in which the stochastic variable is drivemechanism leading to power-law behavior in such stochastic
by a multiplicative noise. It has been extensively used as @rocesses.
model for a variety of systems such as on-off intermittency The goal of this paper is to clarify this mechanism for the
[1-6], lasers[7], economic activity[8,9], variation of bio- emergence of the power law of moments with respect to the
logical populations in fluctuating environmdfit0], and pas- strength of the additive noise. We achieve this by using a
sive scalar field advected by flujd 1]. simple Langevin-type model, and argue that the mechanism
In real systems, the stochastic variable may often bgroposed is a universal one in generating various power
driven not only by the multiplicative noise, but also by somelaws.
weak additive noise. This weak additive noise becomes im- The outline of this paper is as follows. In Sec. Il we
portant when the amplitude of the stochastic variablakes  introduce the model to be studied, and display its typical
small values, and introduces an effective lower bouna.of behavior. In Sec. Ill we treat the model approximately in
Actually, this lower bound may be crucial, because it guar-order to outline the mechanism for the emergence of the
antees the existence of a stationary probability distributiorpower law of moments, and then exactly in Sec. IV. In Sec.

function (PDP. Furthermore, the PDF here has a power-lawV we discuss the robustness of the power law with regard to
form over a wide range of [1,3,5,8,9,11,1B boundary conditions and nature of the noise. We also show

For example, Venkataramarét al. [5] introduced a Some results obtained by numerical calculations with colored
Langevin equation with multiplicative and additive noise noises. In Sec. VI we discuss an application of our theory to
terms as a model for noisy on-off intermittency. They ob-noisy on-off intermittency. As an example, we show a result
tained a stationary PDF with a power-law tail. The sameobtained by a numerical calculation of coupled chaotic ele-
form of Langevin equation was treated by Takayesal.[9] ments. Furthermore, we discuss the relation of the power law
as a model for economic activity, and they also showed tha®f moments to the power-law spatial correlations observed in
the PDF obeys a power law. A similar model was introducedsystems of nonlocally coupled chaotic elements. We summa-
by Levy et al. [8]: it describes a discrete stochastic procesdize our results in Sec. VII.
driven by a multiplicative noise. They introduced a lower
bound to the stochastic variable explicitly, and showed again
that the PDF obeys a power law. Venkatarametnal. and Il. ANALYTICAL MODEL
Takayasuet al. treated the additive noise explicitly, while
the lower bound introduced by Leat al. plays a role simi-
lar to the additive noise. In this paper, we are concerned with As a model for a RMP with weak additive noise, we
this type of stochastic processes. employ a Langevin equation

A. Langevin equation
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dx(t) 1.0 ; ;
- MO+ (b, (1)
where x(t) is a stochastic variabley(t) a multiplicative 0.5 |

noise, andp(t) an additive noise. We assume battt) and
7(t) to be Gaussian-white, and their average and variance t
be given by

(M1))=Xo, ([N =NI[A (L) =No])=2Dy5(t—t"),
(2)

(n(1))=0, (n(t)n(t"))=2D,8(t-t").

We further assum® , <D, , namely, the additive noise is

sufficiently weaker than the multiplicative noise. -1.0
This simple Langevin equatiofl) has been widely used

in many studies of various systerfts,7,9,11. The physical

meaning ofx(t), A(t), and (t) may be different depending FIG. 1. Typical time evolution of the amplitude(t) of the

on the specific system under consideration. For example, inangevin equatiorfl) for A\¢=—0.5, D,=0.5, D, =0.000 05.

the case of laserg(t) gives the number of photonk(t) its

fluctuating amplification rate, angl(t) the noise due to ran- crease with the additive noise strength. Why this leads to a

dom spontaneous emissions of atoms. When we are workingower-law dependence of momentsxgt) on the additive

with noisy on-off intermittencyx(t) gives the measure of a noise strength can be understood from the argument below.

distance from the invariant manifold(t) the instantaneous The intermittency described above has the same statistical

vertical Lyapunov exponent, ang(t) the noise due to a nature as the noisy on-off intermittency. Actually, one may

parameter mismatch or some other cause. In the context @bnsider the noisy on-off intermittency as a stochastic pro-

economic models¢(t) represents the wealtk(t) the rate of cess of the type described above.

change of the wealth, angl(t) some external noise of vari-

Ous sources. I1l. APPROXIMATE TREATMENT

0 1000 2000 3000 4000 5000
t

In order to give an outline of the mechanism underlying
the emergence of the power law of moments, we first treat
In order to obtain a statistically stationary state from thethe Langevin equatiofil) approximately.
Langevin equatior(1), we generally need upper and lower
bounds ofx. In our model, the weak additive noise may act A. Fokker-Planck equation
as an effective lower bound.
(a) Lower boundWithout the additive noise(t) tends to

B. Boundary conditions

We introduce a characteristic amplitude

0 when the average expansion ratgis negative. The addi- D
tive noise introduces an effective lower boundk¢f), which s=1/=— (0<s<1), 3
keepsx(t) away from the zero value evenf,<O. In this A

paper, we treat the additive noise explicitly, while in some
other studies it is replaced by a reflective waifinitely high
barriep placed at some smatl.

which results from the balance between the fluctuation due to
the multiplicative noise{(Ax)?)~D,x? and the fluctuation
- due to the additive noise;?)~D, . We divide the range of
| (b) U;ljper t.)tourr]wdil'(;) bbe retahsilcc,j \k/)vhen((t) te#(est tooh X into two parts, 6<|x|<s ands<Tx|<1, and ignore in each
argﬁ va gtes,\;v shou | € ;saéjra eth' y sfcf>m(t-:- N ebc sudc ggion one of the noise sources that is less dominant there.
noniin€arity. YWe simply introduce this elfect as boundarygjnce the system is statistically symmetric with respect to the

cond!t|0ns, specifically reflective walls at= i.l' transformatiorx— — X, we consider only the absolute value
With these upper and lower bounds provided by an add']x| hereafter

tive noise and reflective walls, the Langevin equatidn (@ s<|x|<1. In this region, we ignore the effect of the

admits a statistically stationary state. In Fig. 1, we show 8, qditive noise and consider a Langevin equation
typical time evolution ofx(t) governed by the Langevin

equation(1) for slightly negative\,, where the reflective dx(t)

walls are placed at=*1. In spite of the negative average a3t~ MOXM). (4)
expansion rate\ o, x(t) does not simply decay but exhibits

intermittent bursts. The generation of bursts may be interBy introducing a new variablg(t) =In|x(t)|, Eq. (4) is re-
preted as follows. Due to the weak additive noisg) may  ritten as

generally have small but finite values. If positixét) hap-

pens to persist over some periodt) will be amplified ex- dy(t)

ponentially and attain large values, which are nothing but dt (v, ®)
bursts. Of coursex(t) may eventually decay to the noise

level because of negative,. The chance of bursts will in- which gives a diffusion process with mean drift.
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Let P,(x,t) denote the PDF of(t) andP4(y,t) the cor- 100 - , ]
responding PDF of(t). The Fokker-Planck equation corre- ‘ ——— approximate
sponding to Eq(4) takes the form

10 ¢ :
_ a . exact
Py =- ﬁ—yjl(y,t), (6) A _
where the fluxj1(y,t) is given by Q‘?
. g 0.1 ¢ :
j1(y,t):7\oP1(y,t)—wapl(y,t)- (7
0.01 ¢ J
Setting reflective walls at= *+1 is equivalent to assuming a
no-flux boundary condition foj, at y=0, i.e., j;(y=0}) _
=0. 0.001 ‘ ! ‘
0.001 0.01 0.1 1

(b) 0<|x|<s. In this region, we ignore the effect of the
multiplicative noise, and this leads to a Langevin equation *
FIG. 2. PDFsP(x) vs x, where the approximate and exact
dx(t) _ curves are compared. The parameters are the same as in Fig. 1.
D, , i.e., by the basic statistical characteristics of the multi-
Let Py(x,t) be the PDF ofx(t). Pa(x,t) obeys the plier \(t), and does not depend on the nature of the additive

Fokker-Planck equation noise. We denote this ratio @ hereafter:

d 9. 9 Ao
EPZ(Xrt)__EJZ(X!t)I ( ) 'BZD_}\ (14)

where the fluxj5(x,t) is now defined by (b) 0<|x|<s. A general form of the stationary solution is

P given byP,(x) = Ax+ B, whereA andB are constants. Con-
j2(x,t)=—=D,—Pa(x,t). (10)  tinuity of the flux and the PDF dx|=s, i.e., j2(s)=]1(S)
2 =0 andP,(s)=P4(s), givesA=0 andB=P,(s). There-

The boundary conditions to be imposed here are the contf—ore’ P2(X) takes a constant value:

nuity of P, and P,, and alsoj, and j,, each at|x|=s(y P,(X)=P4(s)=Cg"0/Ox~1 (15)
=In's). 2 ! '
Finally, the approximate stationary PDF is obtained as
B. Stationary PDF with a power-law tail

-1
We calculate here the stationary solution of the Fokker- Ccs’ (0<[x|<s),

Planck equation.

— - B—1
(@ s<|x|<1. Stationarity conditiondP,/dt=0 gives PO)=1 Cx (s<Ixl<1), (16
dj1/dy=0, i.e.,j1(y)=const, and the no-flux boundary con- 0 (X>1)
dition | 1(_y=0)=0 givesj,(y)=0. Therefore, the stationary '
solutionPy(y) satisfies The normalization consta@ is determined from
— 0 — 1 1
0:)\0P1(Y)_D>\WP1(Y)- 11 f P(x)dx=2f P(x)dx=1, (17)
-1 0

This can be solved as
and calculated as

_ _ E s
Pl(Y)_CeX% D)\y>’ (12 [2 f Sﬁ—ldx+flxﬁ—ldx)
0 s

C=
whereC is a normalization constant. In terms of the original (18
variablex, we obtain

-1 -1

sP+

2

1—5/3)

Thus, the PDF consists of three parts, i.e., a constant part
— dy 1 No - near the origin where(t) is dominated by a normal diffu-
P1(x)= Pl(y)azcmexl{ D—In(|x|)) =Clx[ /P71, sion process, a power-law tail whexét) is dominated by a
» (13 RMP, and a vanishing part. The boundary between the con-
stant part and the power-law tail is locatedxdt='s, which is
Thus, the PDF obeys a power law in this region. The expoproportional to the additive noise strengt,lD_,,. We show
nent of this power law is determined by the ratio)qf to  this approximate PDF16) in Fig. 2.
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C. Moments

The gth momentx9) of |x| in this stationary statél6) is
calculated as

(x%= f_l1|x|qP(x)dx= Zfolqu(x)dx

S 1
=2C(f xqsﬁ‘ldx+f
0 S

B+q
1+q

1+(B—1)sP

xIxA~1d x)

1+

—1|shta
. ;
B+a

(19
We can write the above in the form
(20)

wherec, anda, are given by

B

“Tgrq %7

B+q
1+q

—1. (21)

HIROYA NAKAO
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where G, and G; are constantsG, vanishes wheng
<0 (A g<0), while it takes a finite value whe8>0 (\q
>0). Thus, we have obtained the power law of moments.

E. Exponents

The exponenH(q) of the momentx9) is determined by
B, namely, the ratio ok to D, . From Eqgs.(22) and(24),
H(q) varies withq as follows:

(@ p<0,
a (0<g<lgl),
H(q)= (26
18l (IB]<q);
(b) B>0,
H(q)=8. (27)
We notice thatH(q)=qg when 0<q</|g|, but H(q)=|g|

when|g|<q or >0 without dependence an

F. Other asymptotic regimes

When 8=0 or |8|=q, there exist other asymptotic re-
gimes where the asymptotic form of the moment in the

Note that the exponeng of the PDF now appears as the —0 limit is not a power law.

power ofs. As we explain below, the form of E20) is all

(8 B=0. Consider a parameter region wheg#e-0 and

we need for the emergence of the asymptotic power law of8Ins<1. The denominator ofx) can be expanded as

moments.

D. Asymptotic forms of the moments

We investigate the asymptotic forms of the momeéxit)
in the limit of small additive noises. We consider only the
practically interesting case of positiep

(@ B>0. By expanding the denominator %) and tak-
ing the lowest order irs, we obtain

(xBy=cy(1—ags?). (22

(b) B<0. Ignoring 1 in the denominator ¢k%), we ob-

tain

(x8)= ;—2(s|/3|+aqsq). 23

Which of | 8| andq is smaller determines which of the two
terms on the right-hand side of E@®3) dominates. We thus
obtain

398 (|pl<a),

(xH)= (24)

Cq8q

(181>q).

X

These results show that the momérf’) approaches a
simple power-law form as a function of the positismof the
boundary, or the strengtt]‘D,, of the additive noise:

(xN=Gy+G,sH@ (25

1+a,sP=1+agexp BIns)

=1+ay+agBIins+0O(|B In s|?) (28)

Usingag=8—1 and|Insj>1, theayBInsterm is found to
be dominant and we obtain

(xH= (29

|ao,6’ Ins|’

Thus(x9) diverges logarithmically as 1ihs.

(b) | B|=q. Consider a parameter region whege:0 and
|B|=0q. We further assum§(q—|B]|) Ing<1. (x9) is then
given by

<Xq>2 &(S‘ﬁ‘_i_a SCI): ﬁs‘ﬁ‘(l.}.a Sqflﬁl) (30)
a q a q '
Expanding the right-hand side, we obtain
1+a,s Fl=1+aexp(q—|B]) Ins)
=1+agt+ay(q—|B|)Ins
+0((q—18]) Insp). (31

By using aqg=(B+q)/(1+q)—1 and |Ins>1, the a,(q
—|B]) Insterm is found to be dominant, and we obtain

<xq>~—|<q |8))s#lIns|. (32

Thus(x9 diverges ags!’Ins|.
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IV. EXACT TREATMENT No B—1 o

b5 a="

2D, 2° “D

Next, we treat the effect of the additive noise without
approximation. The argument below is in parallel with the
previous one, and their results agree qualitatively, giving thé-urther, we define as the ratio of the strengttiD , of the
same values of the exponents. How to calculate the PDRdditive noise to the strengtiD, of the multiplicative

follows the argument by Venkataramagtial. [5].

A. Fokker-Planck equation

The Fokker-Planck equation corresponding to the Lange-

vin equation(1) is given by
ot Ot) &XJ(X’t)’ 339

where P(x,t) is the PDF ofx(t), and the fluxj(x,t) takes
the form

d
J(X,t)=(Ao+Dy)XP(x,t)— (9—)([(DAX2Jr D,)P(xt)].
(34)

Reflective walls ak= *+1 are equivalent to imposing no-flux

boundary conditions at=*1, i.e.,

j(x==x1t)=0. (35)

B. Stationary PDF with a power-law tail

We calculate the stationary solutidt(x) of the Fokker-
Planck equation(33). Stationarity conditiorvP(x,t)/dt=0

givesdj(x,t)/9x=0, i.e.,j(x)=const, and no-flux boundary

conditions j(x==*=1)=0 give j(x)=0. Therefore, P(x)
obeys

d
(A o+ Dy)XP(x)— &[(D)\xzﬂt D,)P(x)]=0. (36)

Solving this, we obtain

P(x)=C(Dyx?+D )*o/2Pr~ 12 (37)

as the stationary PDF, whe€®is a normalization constant to

be determined from

1 1
f P(x)dx=2] P(x)dx=1. (39
-1 0
If we use the integral formula
1
f (1+cx?)@dx=,F;(—a,3,%;—c), (39
0

where ,F4(a,b,c;z) is the hypergeometric functiorl; can
be expressed as

D,\]?
2D, '

113
2227 b,

C=|ophoPr-12
7

(40)

We defineg as the ratio of the average expansion tgtego
its fluctuationD, as in the previous calculation, aadas the
exponent ofP(x), i.e.,

noise:

D
s= /=2
Dy

(42)
Finally, the stationary PDF is expressed as
s X2\ ¢
1+—
S2
T3 (Ix[<1),
P(X)= a2 (43
22F1( ©22 Sz)
L 0 (|x|>1).

This stationary PDF approaches a constant-ad), and
whens?<1, namely, when the additive noise is sufficiently
weaker than the multiplicative noise, the PDF approaches a
power law asx— *1:

const (x—0),
P(x)~ (44
[x|2¢  (x—=1).
The exponent of this power law is given by
Ao
20=8—-1=—-1. (45)

D

Thus, we obtain qualitatively the same PDF as the previous
approximate resul¢16), in particular, a power law with the
same exponent. The crossover point between the constant
region and the power-law region of the PDF is found from
the balance of the two terms in the numeratoP¢k):

X
S
The crossover thus occurs near
D
— _7
s= R (47)

which is exactly the point at which we divided the domain of
X in the previous approximate treatment.

We show the exact PDH3) in Fig. 2. The approximate
PDF (16) reproduces the main features of the exact one well.
In Figs. 3 and 4, we display two graphs of PDFs obtained in
Eq. (43). Figure 3 illustrates PDFs for different values)qf
with fixed D ,,, while those in Fig. 4 are for different values
of D, with fixed \o. Each PDF takes a constant value near
the origin, whereas it obeys a power law otherwise. Their
exponents vary with. o, and the crossover position moves to
the right with the increase of the streng{id ,, of the addi-
tive noise.
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100 ¢ .
10
1
3
_
0.1
0.01
A=—03
0.001 + \
0.001 0.01 0.1 1
X

FIG. 3. PDFsP(x) vs x for several values oky. D,=0.5 and
D ,=0.000 05 are fixed.

C. Moments

The gth moment(x%) with respect to the stationary PDF
(43) is calculated as

<><q>=fleXIQP(X)dx=2f01qu(x)dx

E 1+q 3+q 1
1 2F1 CY'T,T: ?
= , 48
1+q 13 1 9
2Fl _ayiaza_?
where we used the integral formula
1 1 1+q 3+q
q 2\ay— —n - T._
fox(1+cx)dx 1+q2F1 a, > o )
(49)

In Fig. 5, we show the momen{x“) obtained in Eq(48).

100 | :
10 E
z 4
A
D,=0.00001
01 ¢ D, =0.0001
D,=0.001
0.01 D,=0.01
0.001 ' ; :
0.001 0.01 0.1 1
X

FIG. 4. PDFsP(x) vs x for several values oD ,. \g=—0.5
andD, =0.5 are fixed.

HIROYA NAKAO

01 ¢

<>

0.01 ¢

0.01 01 1

N

FIG. 5. Momentgx%) vs the strengtls of the additive noise for
several values of.. The parameters ang,=—0.5 andD, =0.5.

D. Asymptotic forms of the moments

We investigate the asymptotic forms of the momerft)
in the limit of small additive noises—0. As before, we
consider only the casg>0.

Using the asymptotic form of the hypergeometric func-
tion, i.e.,

,Fi(a,b,c;z)=T4(a,b,c)(—2) 3+T,(a,b,c)(—z) P
(z—), (50

we can write the asymptotic form ¢k9) as

1+qg 3+q
R

13
e
1+qg 3+q

2 2

1 3)5’3

<xq>:1+q

—a B+

1+T,

X (51)

1+F3 —CZ,E,E

wherel';, I'5, andI'; are defined in terms of the gamma
functionI'(a) as

T(Ol(b-a) _T(c)T(a—b)
N@b.O=ryrca T2@PO=F g b
(52
and
T'y(a,b,
rs(a,b,c)=rjE:—b8. (53)

Notice that here again we obtain the form already ob-
tained in the previous approximate calculation:

(54)
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1 T
3.0
0.1 ¢ |
2.0 @
A S
v T
0.01 ¢
1.0 ¢
0.001 ¢ ]
L L 1 Oo 1 1 L
0.001 0.01 0.1 -4.0 -3.0 -2.0 -1.0 0.0
s A,
FIG. 6. Momentg(x%) vs the strengtls of the additive noise; a FIG. 7. Exponent$d(q) vs A, obtained numericallysymbolg
blowup of Fig. 5 for a smalb region. and theoretically(lines) for q=1,2,3. The value oD, is fixed to
0.5.

However, the expressions fay, and a, are different, and
now given by V. ROBUSTNESS OF THE POWER LAW

149 3+q Although we have treated only the Langevin equatibn
Fl( —a,—, up to this point, the type of power law discussed above ap-
o 1 2 " 2 pears in many other models. It is insensitive to the details of
9 1+q 13 ' the model such as the boundary conditions imposed, dis-
1( Tas, E) creteness or continuity of time, and the nature of noise terms.

(55  We thus discuss the robustness of the power law here.

1+qg 3+q

_ A. Boundary conditions
2 2 Y

aq: F3( —a,
We treated the effect of the additive noise explicitly both

Using this form, and from exactly the same reasoning adn the approximate and exact calculations. The crucial role of

before, we can show thék%) asymptotically obeys a power the additive noise_in generating a power—law PDF is to save
law ass—0: the stochastic variable from decaying completely by gener-

ating small fluctuations around the zero value where a nor-
mal diffusion process dominates. This is the reason why the
usual approximation of replacing the additive noise with an
i explicit lower bound of the variable works well.
In Fig. 6, we show the moment&) for small s. Each Although we assumed that the upper bound of the sto-
moment shows power-law dependence on the stresgth  cpastic variable is simply given by the reflective walls, the
the additive noise. result would not change essentially if we replace it with
some nonlinearity as given by ax® term, at least for not
E. Exponents and other asymptotic regimes too largeq. This is because the dominant contribution to the

q X
The only difference between the above exact result and dependence ofx?) comes from the region qf large(x),
I.e., that of smalk and not from the larg& region near the

the previous approximate result is in some coefficients in-'
volved. Since the exponents are unchanged, the behavior yprer bound.
H(q) is exactly the same as the previous result. There is also
no difference in that there exist other asymptotic regimes
near 3=0 or |B|=q, which is clear if we noticea,=—1 Power laws also appear in discrete-time models, and their
+0(B) and|Ins>1. origin is exactly the same as before. For examplg 18] we

In Fig. 7, the exponeriti(q) versus\, obtained theoreti- introduced a discrete time stochastic process
cally in Egs.(26) and(27) is given in comparison with those
obtained numerically by a direct simulation of the Langevin Xn+1= "X+ O(X3) + 75, (57
equation (1). Each H(q)—\o curve is composed of two
parts, i.e., a part whetd(q) varies in proportion tdro| and  wheren is the time step and,, and 7, are noise. We ap-
that whereH(q) saturates to a constant. We estimated theproximated the additive noise term and the nonlinear term as
exponents numerically by assuming a power law even in théower and upper reflective walls, and obtained a power-law
above-mentioned non-power-law asymptotic regimes. TherePDF. Furthermore, we obtained a power-law dependence of
fore, the estimated values there are naturally different fronthe moments ok on the position of the lower bound, i.e., the
those expected theoretically. strength of the additive noise.

(xN=Gy+G,sHD, (56)

B. Discrete models
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' ous theory. In order to achieve this, some sort of renormal-
ization procedure, like the one done[®)], must be invoked
03 | o.o-°°° | 'r)oagievre effectiver, andD,, . It is beyond the scope of this
el .
= o° ‘:I.;,n:uﬂ‘:‘:':’:':|
o 0 n,u»“n VI. SOME RELATED SYSTEMS
a’
AR mn"“” °o<>°° 1 A. Noisy on-off intermittency
° o . o»},o.,o"o Since noisy on-off intermittency is a typical phenomenon
P with the mechanism of generating the power law of mo-
003 | 9 o oo dichotomous | ments, we briefly discuss it here.
o o-——a Lorenz On-off intermittency is observed where a chaotic attractor
o0 Gauss Markov becomes marginally stable with respect to disturbances trans-
‘ . versal to the invariant manifold in which the chaotic attractor
0.01 0.1 is embedded. This type of instability is called a blowout
s bifurcation. The system then alternates between two phases

FIG. 8. Second momentx?) vs the strengtls of the additive |.nte|r|m|tter1rfly:_ a Iarmrrar ph_?sltz Wh%re tt?e Srysrt]em Stell']ys p:ﬁc-
noise calculated for dichotomous noise, Gauss-Markov noise, angca_y_on € Invariant manitoid, and a burst pnase where the
eviation from the invariant manifold grows suddenly. The

Lorenz noise. The value of, is —0.5 for the dichotomous and . . . . .
Gauss-Markov noise, and 0.3 for the Lorenz noise. Each line is mechanism responsible for the on-off intermittency is that

shifted upwards or downwards to avoid overlap. the distance between_ the o_rbit and the in\{ariant manifold is
governed by a multiplicative process with a chaotically
C. Nature of noise changing multiplier. Therefore, the corresponding suitable

f : . hi . . mathematical model is a RMP, where the fast chaotic motion
Of course, assuming a Gaussian-white noise Is SOMetimeg e myitiplier is considered as a multiplicative noise.

inadequate for models of real systems. The power law of  p it et 4l [4] investigated a situation where weak addi-

moments can alsol be seen in sc(ije (;nodels hW'th. colorede noise is also present in the system. They found that the
noises. For example, ifi.2] we introduced a stochastic pro- ihtermittency, which was originally observed only in a nar-

cess driven by a colored dichotomous noise with lower and,, nercritical-side region of the blowout bifurcation, can
upper reflective walls. We obtained the power law of mo-j)o oheerved in a wider region including the subcritical side

ments with respect to the position of the lower wall as well. ;¢ ¢ blowout bifurcation. This is called noisy on-off inter-
mittency. In order to explain this phenomenon, they pro-
D. Numerical examples posed a RMP model that incorporates the effect of the addi-
In order to demonstrate the robustness of the power lalve noise approximately by introducing a lower bound to the
with regard to the nature of noise terms and boundary Conconventional model of on-off intermittency. Venkataramani

ditions, we give a few numerical examples below. etal. [5] and Gnyset al. [6] also analyzed similar models
We numerica”y Study a stochastic process and eXplained some features of the nOisy on-off intermit-
tency. However, the power law of moments that we de-
dx(t) scribed above has not fully been investigated. Thus, we give
—at Dot MO X+ (D), (58 an example below.
where\ (t) is some colored noise whilg(t) is a Gaussian- B. Coupled chaotic elements

white noise as before. We use three different types of noise Two identical chaotic elements coupled with each other

for A (t): (i) Gauss-Markov noise produced by an Ornstein- 11is a tvpical svstem that shows on-off intermittency. A
Uhlenbeck processji) dichotomous noise which takes val- ErgquentI;/?Jsed rr%odel is Y-

ues 1 or—1 with equal transition probabilities, an(i)
chaotic noise produced by the Lorenz model. We normalize  y — (X, )+k(X,—X;), Xo=F(Xy)+k(X;—Xy)

the average and variance of each noise to 0 and 1 respec- (59)
tively, and use it forA(t). We adjust\, to a value where _
X(t) shows intermittency similar to Fig. 1. where X=F(X) gives the dynamics of the individual ele-

In Fig. 8, we show second momen{?) versus the ment, andk the coupling strength. These two elements syn-
strengths of the additive noise obtained for each type of chronize with each other whek is larger than a certain
noise. We can see a power-law dependence of the momenggitical coupling strengttk.. The differencex=X,— X, is
(x?) on the strengtts of the additive noise in the sma#i  driven multiplicatively by the chaotic motion of the elements
region. We also studied the case where the saturationi®f as
not due to the reflective walls but a nonlinearityx®, and
found that a power law with the same exponent still holds.
We also confirmed that the PDF has a power-law tail for
each type of noise.

Since the noise is colored, it would be difficult to predict where D means differentiation and is the unit matrix.
the values of the exponents of the moments from the previSlightly below k., x exhibits on-off intermittency. If we

X1+ X5
2

X= — 2kl |- x+0O(x?), (60)

o
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C. Spatially distributed chaotic elements
1L __o_o,ooggnuug | The power-law spatial correlation that we studied in the
0. 00 °'>'vg,,n.»u'ﬂ'“°°o°° previous papergl2,13 turns out to be the same as the power
o - | ov-°"°"° ¢ AAAAA law described above, with a proper physical interpretation of
o R @ P a AA‘“q some variables involved. The systems we treated previously
o o ° A,A-‘ Py are the populations of spatially distributed chaotic elements.
0k o,,_....»»"" ot 4..4’4 ] The elements are driven by a field produced by nonlocal
v o a7 “o_____________o k=0075 couplling, which is spatially long-waved and temporally ir-
aT ‘ regular.
A o < :2 /]:gggg If we c_;onsider the differencr(r)=X(r)—X(0) between
001 | & & Aets o 0' 085 the amphtud@( of two elements that are separated by a short
e 120,090 distancer, its moments(x(r)q) are directly related to the
< ‘ spatial correlations oK. They are similar to the structure
0‘01 0‘1 functions in the context of fluid turbulence or the height-

height correlations in the context of fractal surface growth.
The dynamics ok(r) is given by a RMP with a weak addi-

FIG. 9. Second moments®) vs the strengtts of the additive  tive noise, where the multiplier is the local Lyapunov expo-
noise of coupled Rssler oscillators obtained for several valuekof —nent fluctuating randomly due to the chaotic motion of the
elements, and the weak additive noise comes from the small
difference in the strength of the applied field between the
two points under consideration.

Since the strength of the additive noise should be of the
order ofr due to the assumed smooth spatial variation of the
applied field, the power law of moments as a functiors o
now interpreted as a power law of moments of the amplitude

differencex as a function of the mutual distancei.e.,

N

further apply some weak additive noiseexhibits intermit-
tent behavior abovk; as well. If we vary the strength of the
additive noise and measure thth moment(x%) of a certain
component ofx, it is expected to behave likéx%)=G,
+G,sH@ as far ass is sufficiently small.

As an example, we numerically calculate a pair obRer
oscillators coupled with each other, and with weak additiv

ggizzapplled only to the first component of the state vari- (X(1) %)~ Gt GysH D~ G+ GorH@, (63)
: whereG,, G4, andG, are constants.
X1(t) = —y1+ 2z +k(Xz—X1) +s&1(1), When the average Lyapunov exponent is negati®g,
vanishes and the exponehi(q) is given by Eq.(26). It
y1(t) =X, + 0.3y, +K(Yo— V1), (61)  Shows a “bifractality” similar to that known for Burgers’
equation, which implies an underlying intermittent structure.
2,(t)=0.2+X,2,— 5.7z, + k(z,—
a(=0.2+x2,-5.72+k(z,~2,), VIl. CONCLUSION
and As in the models for noisy on-off intermittency and eco-
nomic activity, a stochastic process driven by multiplicative
Xo(t) = —Yo+2Zy+ k(X1 —Xp) +SE,(1), and weak additive noise shows a power-law PDF. The PDF

consists of a constant part and a power-law part, and their
boundary moves with the strengshof the additive noise in

Vo(t)=X,+0.3y,+k(y1—Y2), 62 > ;

y2(t)=x; Yo k(y1—Y2) 62 such a way that its distance from the origin is proportional to
) s. This systematic dependence ®causes the power law of
25(1)=0.2+ X2, =5.72,+ k(2,~ 2,), the moments with respect to the strength of the additive

noise.
where &, o(t) are Gaussian-white noise of average 0 and In order to study this phenomenon in further detail, we
variance 1, and controls their strength. We set the coupling introduced a Langevin equatiqd) with multiplicative and
strengthk to the value slightly abové,, where the system additive noise terms as a general model for a stochastic pro-
shows noisy on-off intermittency. Figure 9 shows secondcess of this type. We analyzed its stationary state theoreti-
momentsx?) of the difference between the first componentscally and numerically, and found that this model actually
X=X,—X; versus the noise streng#) obtained for some reproduces the power law of moments. Furthermore, by
values of the coupling strength As expected, they show a comparing the approximate and exact treatments of the effect
power-law dependence os, and their exponents vary of the additive noise, the usual approximation of the additive
with k. noise by introducing a lower bound of the amplitude was
We also observed the power law of moments in a systenustified.

of coupled chaotic elements with a slight parameter mis- Although we restricted our study to the Langevin equation
match[2] in place of a weak additive noise, where the pa-(1) for the sake of precise argument, the power law itself is
rameter mismatch plays a role similar to the additive noisenot sensitive to the details of the model employed, and can
The power law of moments is also observed in systems ofippear robustly in many stochastic processes driven by mul-
coupled map$14]. tiplicative and weak additive noise. We demonstrated such
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robustness numerically for some different models, where thpower law seems to be quite universal, and some of the
system is driven by noises that are not Gaussian-white. Fupower laws observed in the real world may belong to this
thermore, as some typical realizations of this type of poweglass.

law, we discussed the power law of moments in noisy on-off

intermittency, and the power-law spatial correlation func-

tions in the spatio-te_mporfil chaotic regime_ of_ nonlocally ACKNOWLEDGMENTS
coupled systems, which gives some more insight into the
power law of the spatial correlation function. The author is very grateful to Y. Kuramoto, P. Marcq, S.

As we already noted, the power law of moments seems t&itsunezaki, T. Mishiro, Y. Sakai, and the members of the
be a general phenomenon appearing in various systems ovionlinear Dynamics Group of Kyoto University for valuable
a wide range of parameters. This mechanism of generating discussions and advice.
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