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Asymptotic power law of moments in a random multiplicative process with weak additive noise

Hiroya Nakao
Department of Physics, Graduate School of Sciences, Kyoto University, Kyoto 606, Japan

~Received 30 January 1998!

It is well known that a random multiplicative process with weak additive noise generates a power-law
probability distribution. It has recently been recognized that this process exhibits another type of power law:
the moment of the stochastic variable scales as a function of the additive noise strength. We clarify the
mechanism for this power-law behavior of moments by treating a simple Langevin-type model both approxi-
mately and exactly, and argue that this mechanism is universal. We also discuss the relevance of our findings
to noisy on-off intermittency and to singular spatio-temporal chaos recently observed in systems of nonlocally
coupled elements.@S1063-651X~98!10908-X#

PACS number~s!: 05.40.1j, 05.45.1b

I. INTRODUCTION

Power laws are observed in a wide variety of natural phe-
nomena and mathematical models. Some examples are the
critical behavior near second-order phase transitions, Kol-
mogorov’s law of fully developed turbulence, size distribu-
tion of avalanches in models of self-organized criticality,
Gutenberg-Richter’s law of earthquakes, distribution of price
fluctuations in economic activities, and Zipf’s law in linguis-
tics. Clarifying the mechanisms for the emergence of these
power laws has long been a subject of many challenges.

The random multiplicative process~RMP! is a well-
known mechanism leading to power-law behavior. It is a
stochastic process in which the stochastic variable is driven
by a multiplicative noise. It has been extensively used as a
model for a variety of systems such as on-off intermittency
@1–6#, lasers@7#, economic activity@8,9#, variation of bio-
logical populations in fluctuating environment@10#, and pas-
sive scalar field advected by fluid@11#.

In real systems, the stochastic variable may often be
driven not only by the multiplicative noise, but also by some
weak additive noise. This weak additive noise becomes im-
portant when the amplitude of the stochastic variablex takes
small values, and introduces an effective lower bound ofx.
Actually, this lower bound may be crucial, because it guar-
antees the existence of a stationary probability distribution
function ~PDF!. Furthermore, the PDF here has a power-law
form over a wide range ofx @1,3,5,8,9,11,13#.

For example, Venkataramaniet al. @5# introduced a
Langevin equation with multiplicative and additive noise
terms as a model for noisy on-off intermittency. They ob-
tained a stationary PDF with a power-law tail. The same
form of Langevin equation was treated by Takayasuet al. @9#
as a model for economic activity, and they also showed that
the PDF obeys a power law. A similar model was introduced
by Levy et al. @8#: it describes a discrete stochastic process
driven by a multiplicative noise. They introduced a lower
bound to the stochastic variable explicitly, and showed again
that the PDF obeys a power law. Venkataramaniet al. and
Takayasuet al. treated the additive noise explicitly, while
the lower bound introduced by Levyet al. plays a role simi-
lar to the additive noise. In this paper, we are concerned with
this type of stochastic processes.

Recently, another type of asymptotic power law was
found in the above type of stochastic processes. In previous
papers@12,13#, we introduced a stochastic process in order to
explain the power law displayed by the spatial correlation
function C(r ), i.e., C(r ).C02C1r a for small enoughr ,
observed in the spatio-temporal chaotic regime of systems
with nonlocally coupled elements. Our explanation was
based on a RMP with weak additive noise such as described
above. Note, however, that the power-law correlation here is
not a direct result of the power-law tail of the PDF itself, but
it is a result of the asymptotic power law of moments^xq& of
the stochastic variablex as a function of the strengths of the
additive noise, i.e.,̂ xq&.G01G1sH(q). This gives another
mechanism leading to power-law behavior in such stochastic
processes.

The goal of this paper is to clarify this mechanism for the
emergence of the power law of moments with respect to the
strength of the additive noise. We achieve this by using a
simple Langevin-type model, and argue that the mechanism
proposed is a universal one in generating various power
laws.

The outline of this paper is as follows. In Sec. II we
introduce the model to be studied, and display its typical
behavior. In Sec. III we treat the model approximately in
order to outline the mechanism for the emergence of the
power law of moments, and then exactly in Sec. IV. In Sec.
V we discuss the robustness of the power law with regard to
boundary conditions and nature of the noise. We also show
some results obtained by numerical calculations with colored
noises. In Sec. VI we discuss an application of our theory to
noisy on-off intermittency. As an example, we show a result
obtained by a numerical calculation of coupled chaotic ele-
ments. Furthermore, we discuss the relation of the power law
of moments to the power-law spatial correlations observed in
systems of nonlocally coupled chaotic elements. We summa-
rize our results in Sec. VII.

II. ANALYTICAL MODEL

A. Langevin equation

As a model for a RMP with weak additive noise, we
employ a Langevin equation
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dx~ t !

dt
5l~ t !x~ t !1h~ t !, ~1!

where x(t) is a stochastic variable,l(t) a multiplicative
noise, andh(t) an additive noise. We assume bothl(t) and
h(t) to be Gaussian-white, and their average and variance to
be given by

^l~ t !&5l0 , ^@l~ t !2l0#@l~ t8!2l0#&52Dld~ t2t8!,
(2)

^h~ t !&50, ^h~ t !h~ t8!&52Dhd~ t2t8!.

We further assumeDh!Dl , namely, the additive noise is
sufficiently weaker than the multiplicative noise.

This simple Langevin equation~1! has been widely used
in many studies of various systems@5,7,9,11#. The physical
meaning ofx(t), l(t), andh(t) may be different depending
on the specific system under consideration. For example, in
the case of lasers,x(t) gives the number of photons,l(t) its
fluctuating amplification rate, andh(t) the noise due to ran-
dom spontaneous emissions of atoms. When we are working
with noisy on-off intermittency,x(t) gives the measure of a
distance from the invariant manifold,l(t) the instantaneous
vertical Lyapunov exponent, andh(t) the noise due to a
parameter mismatch or some other cause. In the context of
economic models,x(t) represents the wealth,l(t) the rate of
change of the wealth, andh(t) some external noise of vari-
ous sources.

B. Boundary conditions

In order to obtain a statistically stationary state from the
Langevin equation~1!, we generally need upper and lower
bounds ofx. In our model, the weak additive noise may act
as an effective lower bound.

~a! Lower bound.Without the additive noise,x(t) tends to
0 when the average expansion ratel0 is negative. The addi-
tive noise introduces an effective lower bound ofx(t), which
keepsx(t) away from the zero value even ifl0,0. In this
paper, we treat the additive noise explicitly, while in some
other studies it is replaced by a reflective wall~infinitely high
barrier! placed at some smallx.

~b! Upper bound.To be realistic, whenx(t) takes too
large values, it should be saturated by some effect such as
nonlinearity. We simply introduce this effect as boundary
conditions, specifically reflective walls atx561.

With these upper and lower bounds provided by an addi-
tive noise and reflective walls, the Langevin equation~1!
admits a statistically stationary state. In Fig. 1, we show a
typical time evolution ofx(t) governed by the Langevin
equation~1! for slightly negativel0, where the reflective
walls are placed atx561. In spite of the negative average
expansion ratel0 , x(t) does not simply decay but exhibits
intermittent bursts. The generation of bursts may be inter-
preted as follows. Due to the weak additive noise,x(t) may
generally have small but finite values. If positivel(t) hap-
pens to persist over some period,x(t) will be amplified ex-
ponentially and attain large values, which are nothing but
bursts. Of course,x(t) may eventually decay to the noise
level because of negativel0. The chance of bursts will in-

crease with the additive noise strength. Why this leads to a
power-law dependence of moments ofx(t) on the additive
noise strength can be understood from the argument below.

The intermittency described above has the same statistical
nature as the noisy on-off intermittency. Actually, one may
consider the noisy on-off intermittency as a stochastic pro-
cess of the type described above.

III. APPROXIMATE TREATMENT

In order to give an outline of the mechanism underlying
the emergence of the power law of moments, we first treat
the Langevin equation~1! approximately.

A. Fokker-Planck equation

We introduce a characteristic amplitude

s5ADh

Dl
~0,s,1!, ~3!

which results from the balance between the fluctuation due to
the multiplicative noisê (lx)2&;Dlx2 and the fluctuation
due to the additive noisêh2&;Dh . We divide the range of
x into two parts, 0,uxu,s ands,uxu,1, and ignore in each
region one of the noise sources that is less dominant there.
Since the system is statistically symmetric with respect to the
transformationx→2x, we consider only the absolute value
uxu hereafter.

~a! s,uxu,1. In this region, we ignore the effect of the
additive noise and consider a Langevin equation

dx~ t !

dt
5l~ t !x~ t !. ~4!

By introducing a new variabley(t)5 lnux(t)u, Eq. ~4! is re-
written as

dy~ t !

dt
5l~ t !, ~5!

which gives a diffusion process with mean drift.

FIG. 1. Typical time evolution of the amplitudex(t) of the
Langevin equation~1! for l0520.5, Dl50.5, Dh50.000 05.
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Let P1(x,t) denote the PDF ofx(t) and P̄1(y,t) the cor-
responding PDF ofy(t). The Fokker-Planck equation corre-
sponding to Eq.~4! takes the form

]

]t
P̄1~y,t !52

]

]y
j 1~y,t !, ~6!

where the fluxj 1(y,t) is given by

j 1~y,t !5l0P̄1~y,t !2Dl

]

]y
P̄1~y,t !. ~7!

Setting reflective walls atx561 is equivalent to assuming a
no-flux boundary condition forj 1 at y50, i.e., j 1(y50,t)
50.

~b! 0,uxu,s. In this region, we ignore the effect of the
multiplicative noise, and this leads to a Langevin equation

dx~ t !

dt
5h~ t !. ~8!

Let P2(x,t) be the PDF ofx(t). P2(x,t) obeys the
Fokker-Planck equation

]

]t
P2~x,t !52

]

]x
j 2~x,t !, ~9!

where the fluxj 2(x,t) is now defined by

j 2~x,t !52Dh

]

]x
P2~x,t !. ~10!

The boundary conditions to be imposed here are the conti-
nuity of P1 and P2, and alsoj 1 and j 2, each atuxu5s(y
5 ln s).

B. Stationary PDF with a power-law tail

We calculate here the stationary solution of the Fokker-
Planck equation.

~a! s,uxu,1. Stationarity condition] P̄1 /]t50 gives
] j 1 /]y50, i.e., j 1(y)[const, and the no-flux boundary con-
dition j 1(y50)50 givesj 1(y)[0. Therefore, the stationary
solution P̄1(y) satisfies

05l0P̄1~y!2Dl

]

]y
P̄1~y!. ~11!

This can be solved as

P̄1~y!5C expS l0

Dl
yD , ~12!

whereC is a normalization constant. In terms of the original
variablex, we obtain

P1~x!5 P̄1~y!
dy

dx
5C

1

uxu
expS l0

Dl
ln~ uxu! D5Cuxul0 /Dl21.

~13!

Thus, the PDF obeys a power law in this region. The expo-
nent of this power law is determined by the ratio ofl0 to

Dl , i.e., by the basic statistical characteristics of the multi-
plier l(t), and does not depend on the nature of the additive
noise. We denote this ratio asb hereafter:

b5
l0

Dl
. ~14!

~b! 0,uxu,s. A general form of the stationary solution is
given byP2(x)5Ax1B, whereA andB are constants. Con-
tinuity of the flux and the PDF atuxu5s, i.e., j 2(s)5 j 1(s)
[0 and P2(s)5P1(s), gives A50 and B5P1(s). There-
fore, P2(x) takes a constant value:

P2~x![P1~s!5Csl0 /Dl21. ~15!

Finally, the approximate stationary PDF is obtained as

P~x!55
Csb21 ~0,uxu,s!,

Cxb21 ~s,uxu,1!,

0 ~ uxu.1!.

~16!

The normalization constantC is determined from

E
21

1

P~x!dx52E
0

1

P~x!dx51, ~17!

and calculated as

C5F2S E
0

s

sb21dx1E
s

1

xb21dxD G21

5F2S sb1
12sb

b D G21

.

~18!

Thus, the PDF consists of three parts, i.e., a constant part
near the origin wherex(t) is dominated by a normal diffu-
sion process, a power-law tail wherex(t) is dominated by a
RMP, and a vanishing part. The boundary between the con-
stant part and the power-law tail is located atuxu5s, which is
proportional to the additive noise strengthADh. We show
this approximate PDF~16! in Fig. 2.

FIG. 2. PDFsP(x) vs x, where the approximate and exact
curves are compared. The parameters are the same as in Fig. 1.
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C. Moments

Theqth moment̂ xq& of uxu in this stationary state~16! is
calculated as

^xq&5E
21

1

uxuqP~x!dx52E
0

1

xqP~x!dx

52CS E
0

s

xqsb21dx1E
s

1

xqxb21dxD
5

b

b1q

11S b1q

11q
21D sb1q

11~b21!sb
. ~19!

We can write the above in the form

^xq&5cq

11aqsb1q

11a0sb
, ~20!

wherecq andaq are given by

cq5
b

b1q
, aq5

b1q

11q
21. ~21!

Note that the exponentb of the PDF now appears as the
power ofs. As we explain below, the form of Eq.~20! is all
we need for the emergence of the asymptotic power law of
moments.

D. Asymptotic forms of the moments

We investigate the asymptotic forms of the moment^xq&
in the limit of small additive noises. We consider only the
practically interesting case of positiveq.

~a! b.0. By expanding the denominator of^xq& and tak-
ing the lowest order ins, we obtain

^xq&.cq~12a0sb!. ~22!

~b! b,0. Ignoring 1 in the denominator of^xq&, we ob-
tain

^xq&.
cq

a0
~subu1aqsq!. ~23!

Which of ubu andq is smaller determines which of the two
terms on the right-hand side of Eq.~23! dominates. We thus
obtain

^xq&.5
cq

a0
subu ~ ubu,q!,

cqaq

a0
sq ~ ubu.q!.

~24!

These results show that the moment^xq& approaches a
simple power-law form as a function of the positions of the
boundary, or the strengthADh of the additive noise:

^xq&.G01G1sH~q!, ~25!

where G0 and G1 are constants.G0 vanishes whenb
,0 (l0,0), while it takes a finite value whenb.0 (l0
.0). Thus, we have obtained the power law of moments.

E. Exponents

The exponentH(q) of the moment̂ xq& is determined by
b, namely, the ratio ofl0 to Dl . From Eqs.~22! and ~24!,
H(q) varies withq as follows:

~a! b,0,

H~q!5H q ~0,q,ubu!,

ubu ~ ubu,q!;
~26!

~b! b.0,

H~q!5b. ~27!

We notice thatH(q)5q when 0,q,ubu, but H(q)5ubu
when ubu,q or b.0 without dependence onq.

F. Other asymptotic regimes

When b.0 or ubu.q, there exist other asymptotic re-
gimes where the asymptotic form of the moment in thes
→0 limit is not a power law.

~a! b.0. Consider a parameter region whereb.0 and
ub ln su!1. The denominator of̂xq& can be expanded as

11a0sb511a0exp~b ln s!

511a01a0b ln s1O~ ub ln su2!. ~28!

Using a05b21 andu ln su@1, thea0b ln s term is found to
be dominant and we obtain

^xq&.
cq

ua0b ln su
. ~29!

Thus ^xq& diverges logarithmically as 1/u ln su.
~b! ubu.q. Consider a parameter region whereb,0 and

ubu.q. We further assumez(q2ubu) ln sz!1. ^xq& is then
given by

^xq&.
cq

a0
~subu1aqsq!5

cq

a0
subu~11aqsq2ubu!. ~30!

Expanding the right-hand side, we obtain

11aqsq2ubu511aqexp„~q2ubu! ln s…

511aq1aq~q2ubu! ln s

1O„z~q2ubu! ln sz2…. ~31!

By using aq5(b1q)/(11q)21 and u ln su@1, the aq(q
2ubu) ln s term is found to be dominant, and we obtain

^xq&.
cqaq

a0
z~q2ubu!subu ln sz. ~32!

Thus ^xq& diverges asusubu ln su.
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IV. EXACT TREATMENT

Next, we treat the effect of the additive noise without
approximation. The argument below is in parallel with the
previous one, and their results agree qualitatively, giving the
same values of the exponents. How to calculate the PDF
follows the argument by Venkataramaniet al. @5#.

A. Fokker-Planck equation

The Fokker-Planck equation corresponding to the Lange-
vin equation~1! is given by

]

]t
P~x,t !52

]

]x
j ~x,t !, ~33!

whereP(x,t) is the PDF ofx(t), and the fluxj (x,t) takes
the form

j ~x,t !5~l01Dl!xP~x,t !2
]

]x
@~Dlx21Dh!P~x,t !#.

~34!

Reflective walls atx561 are equivalent to imposing no-flux
boundary conditions atx561, i.e.,

j ~x561,t !50. ~35!

B. Stationary PDF with a power-law tail

We calculate the stationary solutionP(x) of the Fokker-
Planck equation~33!. Stationarity condition]P(x,t)/]t50
gives] j (x,t)/]x50, i.e., j (x)[const, and no-flux boundary
conditions j (x561)50 give j (x)[0. Therefore, P(x)
obeys

~l01Dl!xP~x!2
]

]x
@~Dlx21Dh!P~x!#50. ~36!

Solving this, we obtain

P~x!5C~Dlx21Dh!l0/2Dl21/2 ~37!

as the stationary PDF, whereC is a normalization constant to
be determined from

E
21

1

P~x!dx52E
0

1

P~x!dx51. ~38!

If we use the integral formula

E
0

1

~11cx2!adx52F1~2a, 1
2 , 3

2 ;2c!, ~39!

where 2F1(a,b,c;z) is the hypergeometric function,C can
be expressed as

C5F2Dh
l0/2Dl21/2

2F1S 2
l0

2Dl
1

1

2
,
1

2
,
3

2
;2

Dl

Dh
D G21

.

~40!

We defineb as the ratio of the average expansion ratel0 to
its fluctuationDl as in the previous calculation, anda as the
exponent ofP(x), i.e.,

b5
l0

Dl
, a5

b21

2
5

l0

2Dl
2

1

2
. ~41!

Further, we defines as the ratio of the strengthADh of the
additive noise to the strengthADl of the multiplicative
noise:

s5ADh

Dl
. ~42!

Finally, the stationary PDF is expressed as

P~x!55
S 11

x2

s2D a

22F1S 2a,
1

2
,
3

2
;2

1

s2D
~ uxu,1!,

0 ~ uxu.1!.

~43!

This stationary PDF approaches a constant asx→0, and
whens2!1, namely, when the additive noise is sufficiently
weaker than the multiplicative noise, the PDF approaches a
power law asx→61:

P~x!;H const ~x→0!,

uxu2a ~x→61!.
~44!

The exponent of this power law is given by

2a5b215
l0

Dl
21. ~45!

Thus, we obtain qualitatively the same PDF as the previous
approximate result~16!, in particular, a power law with the
same exponent. The crossover point between the constant
region and the power-law region of the PDF is found from
the balance of the two terms in the numerator ofP(x):

1.
x2

s2
. ~46!

The crossover thus occurs near

s5ADh

Dl
, ~47!

which is exactly the point at which we divided the domain of
x in the previous approximate treatment.

We show the exact PDF~43! in Fig. 2. The approximate
PDF ~16! reproduces the main features of the exact one well.
In Figs. 3 and 4, we display two graphs of PDFs obtained in
Eq. ~43!. Figure 3 illustrates PDFs for different values ofl0
with fixed Dh , while those in Fig. 4 are for different values
of Dh with fixed l0. Each PDF takes a constant value near
the origin, whereas it obeys a power law otherwise. Their
exponents vary withl0, and the crossover position moves to
the right with the increase of the strengthADh of the addi-
tive noise.
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C. Moments

The qth moment̂ xq& with respect to the stationary PDF
~43! is calculated as

^xq&5E
21

1

uxuqP~x!dx52E
0

1

xqP~x!dx

5
1

11q

2F1S 2a,
11q

2
,
31q

2
;2

1

s2D
2F1S 2a,

1

2
,
3

2
;2

1

s2 D , ~48!

where we used the integral formula

E
0

1

xq~11cx2!adx5
1

11q2F1S 2a,
11q

2
,
31q

2
;2cD .

~49!

In Fig. 5, we show the moments^xq& obtained in Eq.~48!.

D. Asymptotic forms of the moments

We investigate the asymptotic forms of the moment^xq&
in the limit of small additive noise,s→0. As before, we
consider only the caseq.0.

Using the asymptotic form of the hypergeometric func-
tion, i.e.,

2F1~a,b,c;z!.G1~a,b,c!~2z!2a1G2~a,b,c!~2z!2b

~z→`!, ~50!

we can write the asymptotic form of^xq& as

^xq&.
1

11q

G1S 2a,
11q

2
,
31q

2 D
G1S 2a,

1

2
,
3

2D

3

11G3S 2a,
11q

2
,
31q

2 D sb1q

11G3S 2a,
1

2
,
3

2D sb

, ~51!

whereG1 , G2, and G3 are defined in terms of the gamma
function G(a) as

G1~a,b,c!5
G~c!G~b2a!

G~b!G~c2a!
, G2~a,b,c!5

G~c!G~a2b!

G~a!G~c2b!
,

~52!

and

G3~a,b,c!5
G2~a,b,c!

G1~a,b,c!
. ~53!

Notice that here again we obtain the form already ob-
tained in the previous approximate calculation:

^xq&5cq

11aqsb1q

11a0sb
. ~54!

FIG. 3. PDFsP(x) vs x for several values ofl0. Dl50.5 and
Dh50.000 05 are fixed.

FIG. 4. PDFsP(x) vs x for several values ofDh . l0520.5
andDl50.5 are fixed.

FIG. 5. Momentŝ xq& vs the strengths of the additive noise for
several values ofq. The parameters arel0520.5 andDl50.5.
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However, the expressions forcq and aq are different, and
now given by

cq5
1

11q

G1S 2a,
11q

2
,
31q

2 D
G1S 2a,

1

2
,
3

2D ,

~55!

aq5G3S 2a,
11q

2
,
31q

2 D .

Using this form, and from exactly the same reasoning as
before, we can show that^xq& asymptotically obeys a power
law ass→0:

^xq&.G01G1sH~q!. ~56!

In Fig. 6, we show the momentŝxq& for small s. Each
moment shows power-law dependence on the strengths of
the additive noise.

E. Exponents and other asymptotic regimes

The only difference between the above exact result and
the previous approximate result is in some coefficients in-
volved. Since the exponents are unchanged, the behavior of
H(q) is exactly the same as the previous result. There is also
no difference in that there exist other asymptotic regimes
nearb50 or ubu5q, which is clear if we noticeaq521
1O(b) and u ln su@1.

In Fig. 7, the exponentH(q) versusl0 obtained theoreti-
cally in Eqs.~26! and~27! is given in comparison with those
obtained numerically by a direct simulation of the Langevin
equation ~1!. Each H(q)2l0 curve is composed of two
parts, i.e., a part whereH(q) varies in proportion toul0u and
that whereH(q) saturates to a constant. We estimated the
exponents numerically by assuming a power law even in the
above-mentioned non-power-law asymptotic regimes. There-
fore, the estimated values there are naturally different from
those expected theoretically.

V. ROBUSTNESS OF THE POWER LAW

Although we have treated only the Langevin equation~1!
up to this point, the type of power law discussed above ap-
pears in many other models. It is insensitive to the details of
the model such as the boundary conditions imposed, dis-
creteness or continuity of time, and the nature of noise terms.
We thus discuss the robustness of the power law here.

A. Boundary conditions

We treated the effect of the additive noise explicitly both
in the approximate and exact calculations. The crucial role of
the additive noise in generating a power-law PDF is to save
the stochastic variable from decaying completely by gener-
ating small fluctuations around the zero value where a nor-
mal diffusion process dominates. This is the reason why the
usual approximation of replacing the additive noise with an
explicit lower bound of the variable works well.

Although we assumed that the upper bound of the sto-
chastic variable is simply given by the reflective walls, the
result would not change essentially if we replace it with
some nonlinearity as given by a2x3 term, at least for not
too largeq. This is because the dominant contribution to the
s dependence of̂xq& comes from the region of largeP(x),
i.e., that of smallx and not from the largex region near the
upper bound.

B. Discrete models

Power laws also appear in discrete-time models, and their
origin is exactly the same as before. For example, in@13# we
introduced a discrete time stochastic process

xn115elnxn1O~xn
2!1hn , ~57!

wheren is the time step andln and hn are noise. We ap-
proximated the additive noise term and the nonlinear term as
lower and upper reflective walls, and obtained a power-law
PDF. Furthermore, we obtained a power-law dependence of
the moments ofx on the position of the lower bound, i.e., the
strength of the additive noise.

FIG. 6. Momentŝ xq& vs the strengths of the additive noise; a
blowup of Fig. 5 for a smalls region.

FIG. 7. ExponentsH(q) vs l0 obtained numerically~symbols!
and theoretically~lines! for q51,2,3. The value ofDl is fixed to
0.5.
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C. Nature of noise

Of course, assuming a Gaussian-white noise is sometimes
inadequate for models of real systems. The power law of
moments can also be seen in some models with colored
noises. For example, in@12# we introduced a stochastic pro-
cess driven by a colored dichotomous noise with lower and
upper reflective walls. We obtained the power law of mo-
ments with respect to the position of the lower wall as well.

D. Numerical examples

In order to demonstrate the robustness of the power law
with regard to the nature of noise terms and boundary con-
ditions, we give a few numerical examples below.

We numerically study a stochastic process

dx~ t !

dt
5@l01l~ t !#x~ t !1h~ t !, ~58!

wherel(t) is some colored noise whileh(t) is a Gaussian-
white noise as before. We use three different types of noise
for l(t): ~i! Gauss-Markov noise produced by an Ornstein-
Uhlenbeck process,~ii ! dichotomous noise which takes val-
ues 1 or21 with equal transition probabilities, and~iii !
chaotic noise produced by the Lorenz model. We normalize
the average and variance of each noise to 0 and 1 respec-
tively, and use it forl(t). We adjustl0 to a value where
x(t) shows intermittency similar to Fig. 1.

In Fig. 8, we show second moments^x2& versus the
strengths of the additive noise obtained for each type of
noise. We can see a power-law dependence of the moments
^x2& on the strengths of the additive noise in the smalls
region. We also studied the case where the saturation ofx is
not due to the reflective walls but a nonlinearity2x3, and
found that a power law with the same exponent still holds.
We also confirmed that the PDF has a power-law tail for
each type of noise.

Since the noise is colored, it would be difficult to predict
the values of the exponents of the moments from the previ-

ous theory. In order to achieve this, some sort of renormal-
ization procedure, like the one done in@3#, must be invoked
to give effectivel0 and Dl . It is beyond the scope of this
paper.

VI. SOME RELATED SYSTEMS

A. Noisy on-off intermittency

Since noisy on-off intermittency is a typical phenomenon
with the mechanism of generating the power law of mo-
ments, we briefly discuss it here.

On-off intermittency is observed where a chaotic attractor
becomes marginally stable with respect to disturbances trans-
versal to the invariant manifold in which the chaotic attractor
is embedded. This type of instability is called a blowout
bifurcation. The system then alternates between two phases
intermittently: a laminar phase where the system stays prac-
tically on the invariant manifold, and a burst phase where the
deviation from the invariant manifold grows suddenly. The
mechanism responsible for the on-off intermittency is that
the distance between the orbit and the invariant manifold is
governed by a multiplicative process with a chaotically
changing multiplier. Therefore, the corresponding suitable
mathematical model is a RMP, where the fast chaotic motion
of the multiplier is considered as a multiplicative noise.

Platt et al. @4# investigated a situation where weak addi-
tive noise is also present in the system. They found that the
intermittency, which was originally observed only in a nar-
row supercritical-side region of the blowout bifurcation, can
be observed in a wider region including the subcritical side
of the blowout bifurcation. This is called noisy on-off inter-
mittency. In order to explain this phenomenon, they pro-
posed a RMP model that incorporates the effect of the addi-
tive noise approximately by introducing a lower bound to the
conventional model of on-off intermittency. Venkataramani
et al. @5# and Čenyset al. @6# also analyzed similar models
and explained some features of the noisy on-off intermit-
tency. However, the power law of moments that we de-
scribed above has not fully been investigated. Thus, we give
an example below.

B. Coupled chaotic elements

Two identical chaotic elements coupled with each other
@1# is a typical system that shows on-off intermittency. A
frequently used model is

Ẋ15F~X1!1k~X22X1!, Ẋ25F~X2!1k~X12X2!,
~59!

where Ẋ5F(X) gives the dynamics of the individual ele-
ment, andk the coupling strength. These two elements syn-
chronize with each other whenk is larger than a certain
critical coupling strengthkc . The differencex5X22X1 is
driven multiplicatively by the chaotic motion of the elements
as

ẋ5FDFS X11X2

2 D22kI G•x1O~x2!, ~60!

where D means differentiation andI is the unit matrix.
Slightly below kc , x exhibits on-off intermittency. If we

FIG. 8. Second momentŝx2& vs the strengths of the additive
noise calculated for dichotomous noise, Gauss-Markov noise, and
Lorenz noise. The value ofl0 is 20.5 for the dichotomous and
Gauss-Markov noise, and20.3 for the Lorenz noise. Each line is
shifted upwards or downwards to avoid overlap.
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further apply some weak additive noise,x exhibits intermit-
tent behavior abovekc as well. If we vary the strength of the
additive noise and measure theqth moment̂ xq& of a certain
component ofx, it is expected to behave likêxq&.G0

1G1sH(q) as far ass is sufficiently small.
As an example, we numerically calculate a pair of Ro¨ssler

oscillators coupled with each other, and with weak additive
noise applied only to the first component of the state vari-
ables:

ẋ1~ t !52y11z11k~x22x1!1sj1~ t !,

ẏ1~ t !5x110.3y11k~y22y1!, ~61!

ż1~ t !50.21x1z125.7z11k~z22z1!,

and

ẋ2~ t !52y21z21k~x12x2!1sj2~ t !,

ẏ2~ t !5x210.3y21k~y12y2!, ~62!

ż2~ t !50.21x2z225.7z21k~z12z2!,

where j1,2(t) are Gaussian-white noise of average 0 and
variance 1, ands controls their strength. We set the coupling
strengthk to the value slightly abovekc , where the system
shows noisy on-off intermittency. Figure 9 shows second
momentŝ x2& of the difference between the first components
x5x22x1 versus the noise strengths, obtained for some
values of the coupling strengthk. As expected, they show a
power-law dependence ons, and their exponents vary
with k.

We also observed the power law of moments in a system
of coupled chaotic elements with a slight parameter mis-
match @2# in place of a weak additive noise, where the pa-
rameter mismatch plays a role similar to the additive noise.
The power law of moments is also observed in systems of
coupled maps@14#.

C. Spatially distributed chaotic elements

The power-law spatial correlation that we studied in the
previous papers@12,13# turns out to be the same as the power
law described above, with a proper physical interpretation of
some variables involved. The systems we treated previously
are the populations of spatially distributed chaotic elements.
The elements are driven by a field produced by nonlocal
coupling, which is spatially long-waved and temporally ir-
regular.

If we consider the differencex(r )5X(r )2X(0) between
the amplitudeX of two elements that are separated by a short
distancer , its momentŝ x(r )q& are directly related to the
spatial correlations ofX. They are similar to the structure
functions in the context of fluid turbulence or the height-
height correlations in the context of fractal surface growth.
The dynamics ofx(r ) is given by a RMP with a weak addi-
tive noise, where the multiplier is the local Lyapunov expo-
nent fluctuating randomly due to the chaotic motion of the
elements, and the weak additive noise comes from the small
difference in the strength of the applied field between the
two points under consideration.

Since the strengths of the additive noise should be of the
order ofr due to the assumed smooth spatial variation of the
applied field, the power law of moments as a function ofs is
now interpreted as a power law of moments of the amplitude
differencex as a function of the mutual distancer , i.e.,

^x~r !q&;G01G1sH~q!;G01G2r H~q!, ~63!

whereG0 , G1, andG2 are constants.
When the average Lyapunov exponent is negative,G0

vanishes and the exponentH(q) is given by Eq.~26!. It
shows a ‘‘bifractality’’ similar to that known for Burgers’
equation, which implies an underlying intermittent structure.

VII. CONCLUSION

As in the models for noisy on-off intermittency and eco-
nomic activity, a stochastic process driven by multiplicative
and weak additive noise shows a power-law PDF. The PDF
consists of a constant part and a power-law part, and their
boundary moves with the strengths of the additive noise in
such a way that its distance from the origin is proportional to
s. This systematic dependence ons causes the power law of
the moments with respect to the strength of the additive
noise.

In order to study this phenomenon in further detail, we
introduced a Langevin equation~1! with multiplicative and
additive noise terms as a general model for a stochastic pro-
cess of this type. We analyzed its stationary state theoreti-
cally and numerically, and found that this model actually
reproduces the power law of moments. Furthermore, by
comparing the approximate and exact treatments of the effect
of the additive noise, the usual approximation of the additive
noise by introducing a lower bound of the amplitude was
justified.

Although we restricted our study to the Langevin equation
~1! for the sake of precise argument, the power law itself is
not sensitive to the details of the model employed, and can
appear robustly in many stochastic processes driven by mul-
tiplicative and weak additive noise. We demonstrated such

FIG. 9. Second momentŝx2& vs the strengths of the additive
noise of coupled Ro¨ssler oscillators obtained for several values ofk.
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robustness numerically for some different models, where the
system is driven by noises that are not Gaussian-white. Fur-
thermore, as some typical realizations of this type of power
law, we discussed the power law of moments in noisy on-off
intermittency, and the power-law spatial correlation func-
tions in the spatio-temporal chaotic regime of nonlocally
coupled systems, which gives some more insight into the
power law of the spatial correlation function.

As we already noted, the power law of moments seems to
be a general phenomenon appearing in various systems over
a wide range of parameters. This mechanism of generating a

power law seems to be quite universal, and some of the
power laws observed in the real world may belong to this
class.
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