Though the notion of phase synchronization has been well studied in chaotic
dynamical systems without delay, it has not been realized yet in chaotic
time-delay systems exhibiting non-phase coherent hyperchaotic attractors. In
this article we report the first identification of phase synchronization in
coupled time-delay systems exhibiting hyperchaotic attractor. We show that
there is a transition from non-synchronized behavior to phase and then to
generalized synchronization as a function of coupling strength. These
transitions are characterized by recurrence quantification analysis, by phase
differences based on a new transformation of the attractors and also by the
changes in the Lyapunov exponents. We have found these transitions in coupled
piece-wise linear and in Mackey-Glass time-delay systems.Comment: 4 pages, 3 Figures (To appear in Physical Review E Rapid
Communication