101 research outputs found

    The Jolly Student : Characteristic March-Two-Step

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-ps/1326/thumbnail.jp

    Association of the Dictyostelium 30 kDa actin bundling protein with contact regions

    Get PDF
    \u27Contact regions\u27 are plasma membrane domains derived from areas of intercellular contact between aggregating Dictyostelium amebae (H.M. Ingalls et al. (1986). Proc. Nat. Acad. Sci. USA 83, 4779). Purified contact regions contain a prominent actin-binding protein with an M(r) of 34,000. Immunoblotting with monoclonal antibodies identifies this polypeptide as a 34,000 M(r) actin-bundling protein (known as 30 kDa protein), previously shown to be enriched in filopodia (M. Fechheimer (1987). J. Cell Biol. 104, 1539). About four times more 30 kDa protein by mass is associated with contact regions than is found in total plasma membranes isolated from aggregating cells. In agreement with these observations, immunostaining of the 30 kDa protein in aggregating cells reveals a prominent localization along the plasma membrane at sites of intercellular contact. By contrast, alpha-actinin does not appear to be significantly enriched at sites of cell to cell contact. Binding experiments using purified plasma membranes, actin and 30 kDa protein indicate that the 30 kDa protein is associated with the plasma membrane primarily through interactions with actin filaments. Calcium ions are known to decrease the interaction of actin with 30 kDa protein in solution. Surprisingly, membrane-associated complexes of actin and the 30 kDa protein are much less sensitive to dissociation by micromolar levels of free calcium ions than are complexes in solutions lacking membranes

    F- and G-Actin Concentrations in Lamellipodia of Moving Cells

    Get PDF
    Cells protrude by polymerizing monomeric (G) into polymeric (F) actin at the tip of the lamellipodium. Actin filaments are depolymerized towards the rear of the lamellipodium in a treadmilling process, thereby supplementing a G-actin pool for a new round of polymerization. In this scenario the concentrations of F- and G-actin are principal parameters, but have hitherto not been directly determined. By comparing fluorescence intensities of bleached and unbleached regions of lamellipodia in B16-F1 mouse melanoma cells expressing EGFP-actin, before and after extraction with Triton X-100, we show that the ratio of F- to G-actin is 3.2+/−0.9. Using electron microscopy to determine the F-actin content, this ratio translates into F- and G-actin concentrations in lamellipodia of approximately 500 µM and 150 µM, respectively. The excess of G-actin, at several orders of magnitude above the critical concentrations at filament ends indicates that the polymerization rate is not limited by diffusion and is tightly controlled by polymerization/depolymerization modulators

    Actin binding domains direct actin-binding proteins to different cytoskeletal locations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Filamin (FLN) and non-muscle α-actinin are members of a family of F-actin cross-linking proteins that utilize Calponin Homology domains (CH-domain) for actin binding. Although these two proteins have been extensively characterized, little is known about what regulates their binding to F-actin filaments in the cell.</p> <p>Results</p> <p>We have constructed fusion proteins consisting of green fluorescent protein (GFP) with either the entire cross-linking protein or its actin-binding domain (ABD) and examined the localization of these fluorescent proteins in living cells under a variety of conditions. The full-length fusion proteins, but not the ABD's complemented the defects of cells lacking both endogenous proteins indicating that they are functional. The localization patterns of filamin (GFP-FLN) and α-actinin (GFP-αA) were overlapping but distinct. GFP-FLN localized to the peripheral cell cortex as well as to new pseudopods of unpolarized cells, but was observed to localize to the rear of polarized cells during cAMP and folate chemotaxis. GFP-αA was enriched in new pseudopods and at the front of polarized cells, but in all cases was absent from the peripheral cortex. Although both proteins appear to be involved in macropinocytosis, the association time of the GFP-probes with the internalized macropinosome differed. Surprisingly, the localization of the GFP-actin-binding domain fusion proteins precisely reflected that of their respective full length constructs, indicating that the localization of the protein was determined by the actin-binding domain alone. When expressed in a cell line lacking both filamin and α-actinin, the probes maintain their distinct localization patterns suggesting that they are not functionally redundant.</p> <p>Conclusion</p> <p>These observations strongly suggest that the regulation of the binding of these proteins to actin filaments is built into the actin-binding domains. We suggest that different actin binding domains have different affinities for F-actin filaments in functionally distinct regions of the cytoskeleton.</p

    Avian W and mammalian Y chromosomes convergently retained dosage-sensitive regulators

    Get PDF
    After birds diverged from mammals, different ancestral autosomes evolved into sex chromosomes in each lineage. In birds, females are ZW and males are ZZ, but in mammals females are XX and males are XY. We sequenced the chicken W chromosome, compared its gene content with our reconstruction of the ancestral autosomes, and followed the evolutionary trajectory of ancestral W-linked genes across birds. Avian W chromosomes evolved in parallel with mammalian Y chromosomes, preserving ancestral genes through selection to maintain the dosage of broadly expressed regulators of key cellular processes. We propose that, like the human Y chromosome, the chicken W chromosome is essential for embryonic viability of the heterogametic sex. Unlike other sequenced sex chromosomes, the chicken W chromosome did not acquire and amplify genes specifically expressed in reproductive tissues. We speculate that the pressures that drive the acquisition of reproduction-related genes on sex chromosomes may be specific to the male germ line

    Phosphorylation of lymphocyte myosin catalyzed in vitro and in intact cells.

    No full text
    • …
    corecore