971 research outputs found

    PKR is not obligatory for high-fat diet-induced obesity and its associated metabolic and inflammatory complications

    Full text link
    Protein kinase R (PKR) has previously been suggested to mediate many of the deleterious consequences of a high-fat diet (HFD). However, previous studies have observed substantial phenotypic variability when examining the metabolic consequences of PKR deletion. Accordingly, herein, we have re-examined the role of PKR in the development of obesity and its associated metabolic complications in vivo as well as its putative lipid-sensing role in vitro. Here we show that the deletion of PKR does not affect HFD-induced obesity, hepatic steatosis or glucose metabolism, and only modestly affects adipose tissue inflammation. Treatment with the saturated fatty acid palmitate in vitro induced comparable levels of inflammation in WT and PKR KO macrophages, demonstrating that PKR is not necessary for the sensing of pro-inflammatory lipids. These results challenge the proposed role for PKR in obesity, its associated metabolic complications and its role in lipid-induced inflammation

    MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases.

    Get PDF
    Low-grade systemic inflammation is often associated with metabolic syndrome, which plays a critical role in the development of the obesity-associated inflammatory diseases, including insulin resistance and atherosclerosis. Here, we investigate how Toll-like receptor-MyD88 signaling in myeloid and endothelial cells coordinately participates in the initiation and progression of high fat diet-induced systemic inflammation and metabolic inflammatory diseases. MyD88 deficiency in myeloid cells inhibits macrophage recruitment to adipose tissue and their switch to an M1-like phenotype. This is accompanied by substantially reduced diet-induced systemic inflammation, insulin resistance, and atherosclerosis. MyD88 deficiency in endothelial cells results in a moderate reduction in diet-induced adipose macrophage infiltration and M1 polarization, selective insulin sensitivity in adipose tissue, and amelioration of spontaneous atherosclerosis. Both in vivo and ex vivo studies suggest that MyD88-dependent GM-CSF production from the endothelial cells might play a critical role in the initiation of obesity-associated inflammation and development of atherosclerosis by priming the monocytes in the adipose and arterial tissues to differentiate into M1-like inflammatory macrophages. Collectively, these results implicate a critical MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases

    Pre-cooling for endurance exercise performance in the heat: a systematic review.

    Get PDF
    PMCID: PMC3568721The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1741-7015/10/166. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Endurance exercise capacity diminishes under hot environmental conditions. Time to exhaustion can be increased by lowering body temperature prior to exercise (pre-cooling). This systematic literature review synthesizes the current findings of the effects of pre-cooling on endurance exercise performance, providing guidance for clinical practice and further research

    Effect of Galactose Ingestion Before and During Exercise on Substrate Oxidation, Postexercise Satiety, and Subsequent Energy Intake in Females.

    Get PDF
    OBJECTIVE: To examine the effects of consuming a galactose carbohydrate (CHO) drink on substrate oxidation, postexercise satiety, and subsequent energy intake. METHODS: Nine recreationally active eumenorrheic females undertook 3 trials, each consisting of running for 60 minutes at 65% VO2peak followed immediately by a 90-minute rest period. Prior to (300 ml) and at 15-minute intervals during exercise (150 ml), participants consumed either a glucose (GLU: GI 89) or galactose (GAL: GI 20) drink, each of which contained 45 g of CHO, or an artificially sweetened placebo (PLA). Following the rest period, participants were provided with an ad libitum test lunch and asked to record food intake for the remainder of the day. RESULTS: Plasma glucose was significantly greater throughout exercise and rest following the GLU trial compared with the GAL and PLA trials (P < 0.05); however there were no differences in CHO oxidation. Hunger was significantly lower (P < 0.05) throughout the GAL compared to the GLU and PLA trials. There were no significant differences between trials for energy intake during the postexercise meal. Overall net energy balance for the 24 hours was negative in both the GAL (-162 ± 115 kcal; P < 0.05 vs GLU) and PLA trials (-49 ± 160 kcal). CONCLUSIONS: Results demonstrate that ingesting a solution containing GAL before and during exercise can positively impact postexercise satiety and energy balance throughout the day, compared to a more readily available and widely consumed form of CHO. Despite this, there appears to be no apparent benefit in consuming a CHO beverage on fuel utilization for this moderate exercise intensity and duration

    Activation of Human Stearoyl-Coenzyme A Desaturase 1 Contributes to the Lipogenic Effect of PXR in HepG2 Cells

    Get PDF
    The pregnane X receptor (PXR) was previously known as a xenobiotic receptor. Several recent studies suggested that PXR also played an important role in lipid homeostasis but the underlying mechanism remains to be clearly defined. In this study, we found that rifampicin, an agonist of human PXR, induced lipid accumulation in HepG2 cells. Lipid analysis showed the total cholesterol level increased. However, the free cholesterol and triglyceride levels were not changed. Treatment of HepG2 cells with rifampicin induced the expression of the free fatty acid transporter CD36 and ABCG1, as well as several lipogenic enzymes, including stearoyl-CoA desaturase-1 (SCD1), long chain free fatty acid elongase (FAE), and lecithin-cholesterol acyltransferase (LCAT), while the expression of acyl:cholesterol acetyltransferase(ACAT1) was not affected. Moreover, in PXR over-expressing HepG2 cells (HepG2-PXR), the SCD1 expression was significantly higher than in HepG2-Vector cells, even in the absence of rifampicin. Down-regulation of PXR by shRNA abolished the rifampicin-induced SCD1 gene expression in HepG2 cells. Promoter analysis showed that the human SCD1 gene promoter is activated by PXR and a novel DR-7 type PXR response element (PXRE) response element was located at -338 bp of the SCD1 gene promoter. Taken together, these results indicated that PXR activation promoted lipid synthesis in HepG2 cells and SCD1 is a novel PXR target gene. © 2013 Zhang et al

    Extracellular Hsp72 concentration relates to a minimum endogenous criteria during acute exercise-heat exposure

    Get PDF
    Extracellular heat-shock protein 72 (eHsp72) concentration increases during exercise-heat stress when conditions elicit physiological strain. Differences in severity of environmental and exercise stimuli have elicited varied response to stress. The present study aimed to quantify the extent of increased eHsp72 with increased exogenous heat stress, and determine related endogenous markers of strain in an exercise-heat model. Ten males cycled for 90 min at 50% O2peak in three conditions (TEMP, 20°C/63% RH; HOT, 30.2°C/51%RH; VHOT, 40.0°C/37%RH). Plasma was analysed for eHsp72 pre, immediately post and 24-h post each trial utilising a commercially available ELISA. Increased eHsp72 concentration was observed post VHOT trial (+172.4%) (P<0.05), but not TEMP (-1.9%) or HOT (+25.7%) conditions. eHsp72 returned to baseline values within 24hrs in all conditions. Changes were observed in rectal temperature (Trec), rate of Trec increase, area under the curve for Trec of 38.5°C and 39.0°C, duration Trec ≥ 38.5°C and ≥ 39.0°C, and change in muscle temperature, between VHOT, and TEMP and HOT, but not between TEMP and HOT. Each condition also elicited significantly increasing physiological strain, described by sweat rate, heart rate, physiological strain index, rating of perceived exertion and thermal sensation. Stepwise multiple regression reported rate of Trec increase and change in Trec to be predictors of increased eHsp72 concentration. Data suggests eHsp72 concentration increases once systemic temperature and sympathetic activity exceeds a minimum endogenous criteria elicited during VHOT conditions and is likely to be modulated by large, rapid changes in core temperature

    Bone marrow chimeric mice reveal a dual role for CD36 in Plasmodium berghei ANKA infection

    Get PDF
    BACKGROUND: Adhesion of Plasmodium-infected red blood cells (iRBC) to different host cells, ranging from endothelial to red blood cells, is associated to malaria pathology. In vitro studies have shown the relevance of CD36 for adhesion phenotypes of Plasmodium falciparum iRBC such as sequestration, platelet mediated clumping and non-opsonic uptake of iRBC. Different adhesion phenotypes involve different host cells and are associated with different pathological outcomes of disease. Studies with different human populations with CD36 polymorphisms failed to attribute a clear role to CD36 expression in human malaria. Up to the present, no in vivo model has been available to study the relevance of different CD36 adhesion phenotypes to the pathological course of Plasmodium infection. METHODS: Using CD36-deficient mice and their control littermates, CD36 bone marrow chimeric mice, expressing CD36 exclusively in haematopoietic cells or in non-haematopoietic cells, were generated. Irradiated CD36(-/- )and wild type mice were also reconstituted with syngeneic cells to control for the effects of irradiation. The reconstituted mice were infected with Plasmodium berghei ANKA and analysed for the development of blood parasitaemia and neurological symptoms. RESULTS: All mice reconstituted with syngeneic bone marrow cells as well as chimeric mice expressing CD36 exclusively in non-haematopoietic cells died from experimental cerebral malaria between day 6 and 12 after infection. A significant proportion of chimeric mice expressing CD36 only in haematopoietic cells did not die from cerebral malaria. CONCLUSION: The analysis of bone marrow chimeric mice reveals a dual role of CD36 in P. berghei ANKA infection. Expression of CD36 in haematopoietic cells, most likely macrophages and dendritic cells, has a beneficial effect that is masked in normal mice by adverse effects of CD36 expression in non-haematopoietic cells, most likely endothelial cells

    Infection by and protective immune responses against Plasmodium berghei ANKA are not affected in macrophage scavenger receptors A deficient mice

    Get PDF
    BACKGROUND: Scavenger receptors (SRs) recognize endogenous molecules modified by pathological processes as well as components of diverse microorganisms. Mice deficient for both SR-AI and II are more susceptible to infections by a variety of bacterial and viral pathogens. RESULTS: Here we show that SR-A deficient mice and wild type mice are equally susceptible to malaria infection both during liver and blood stages. Moreover, like wild type mice, SR-A deficient mice are able to mount a protective immune response against radiation attenuated sporozoites. CONCLUSION: Our results do not reveal a function of SR-A I and II receptors in the Plasmodium berghei ANKA infection, both in the development of CM and parasitemia control. Moreover, these receptors appear not to be required for the establishment of a protective immune response against the malaria liver stages

    A 3D printable adapter for solid-state fluorescence measurements: the case of an immobilized enzymatic bioreceptor for organophosphate pesticides detection

    Get PDF
    The widespread use of pesticides in the last decades and their accumulation into the environment gave rise to major environmental and human health concerns. To address this topic, the scientific community pointed out the need to develop methodologies to detect and measure the presence of pesticides in different matrices. Biosensors have been recently explored as fast, easy, and sensitive methods for direct organophosphate pesticides monitoring. Thus, the present work aimed at designing and testing a 3D printed adapter useful on different equipment, and a membrane support to immobilize the esterase-2 from Alicyclobacillus acidocaldarius (EST2) bioreceptor. The latter is labelled with the IAEDANS, a bright fluorescent probe. EST2 was selected since it shows a high specificity toward paraoxon. Our results showed good stability and replicability, with an increasing linear fluorescent intensity recorded from 15 to 150 pmol of labelled EST2. Linearity of data was also observed when using the immobilized labelled EST2 to detect increasing amounts of paraoxon, with a limit of detection (LOD) of 0.09 pmol. This LOD value reveals the high sensitivity of our membrane support when mounted on the 3D adapter, comparable to modern methods using robotic workstations. Notably, the use of an independent support significantly simplified the manipulation of the membrane during experimental procedures and enabled it to match the specificities of different systems. In sum, this work emphasizes the advantages of using 3D printed accessories adapted to respond to the newest research needs. Graphical abstract: [Figure not available: see fulltext.

    A FRET Approach to Detect Paraoxon among Organophosphate Pesticides Using a Fluorescent Biosensor

    Get PDF
    The development of faster, sensitive and real-time methods for detecting organophosphate (OP) pesticides is of utmost priority in the in situ monitoring of these widespread compounds. Research on enzyme-based biosensors is increasing, and a promising candidate as a bioreceptor is the thermostable enzyme esterase-2 from Alicyclobacillus acidocaldarius (EST2), with a lipase-like Ser–His–Asp catalytic triad with a high affinity for OPs. This study aimed to evaluate the applicability of Förster resonance energy transfer (FRET) as a sensitive and reliable method to quantify OPs at environmentally relevant concentrations. For this purpose, the previously developed IAEDANS-labelled EST2-S35C mutant was used, in which tryptophan and IAEDANS fluorophores are the donor and the acceptor, respectively. Fluorometric measurements showed linearity with increased EST2-S35C concentrations. No significant interference was observed in the FRET measurements due to changes in the pH of the medium or the addition of other organic components (glucose, ascorbic acid or yeast extract). Fluorescence quenching due to the presence of paraoxon was observed at concentrations as low as 2 nM, which are considered harmful for the ecosystem. These results pave the way for further experiments encompassing more complex matrices
    corecore