158 research outputs found

    Genetic Determinants of Heart Rhythm and Conduction Disorders

    Get PDF
    Het risico op plotse hartdood is deels genetisch bepaald en het identificeren van de componenten die bijdragen aan dit risico kan nieuwe inzichten geven in de mechanismen die ten grondslag liggen aan het ontstaan van ventriculaire ritmestoornissen. De onderliggende oorzaken van plotse hartdood zijn zeer divers van aard. Dit is een van de redenen om de kwantitatieve risicofactoren te bestuderen. Voor plotse hartdood zijn enkele van deze risicofactoren te meten op het elektrocardiogram, namelijk: 1) het QT interval [elektrisch herstel van de hartkamers], 2) het RR interval [hartfrequentie] en 3) de QRS duur [elektrische activatie van de hartkamers]. De doelstellingen van dit proefschrift waren: 1) het bestuderen van de associatie tussen het NOS1AP gen en QT interval/plotse hartdood, 2) door middel van genoomwijde associatie studies de genetische varianten onderliggend aan de genetische bepaalde variatie tussen individuen van de kwantitatieve risicofactoren van plotse hartdood te identificeren, 3) nieuwe methoden te ontwikkelen om ons vermogen hiertoe te vergroten, en 4) het verrichten van gen-medicatie interactie studies. De beschreven studies zijn verricht binnen de Erasmus Rotterdam Gezondheids Onderzoek (ERGO) studie, vaak in nauwe samenwerking met andere studies

    Diagnostic Yield of Next-Generation Sequencing in Patients With Chronic Kidney Disease of Unknown Etiology

    Get PDF
    Advances in next-generation sequencing (NGS) techniques, including whole exome sequencing, have facilitated cost-effective sequencing of large regions of the genome, enabling the implementation of NGS in clinical practice. Chronic kidney disease (CKD) is a major contributor to global burden of disease and is associated with an increased risk of morbidity and mortality. CKD can be caused by a wide variety of primary renal disorders. In about one in five CKD patients, no primary renal disease diagnosis can be established. Moreover, recent studies indicate that the clinical diagnosis may be incorrect in a substantial number of patients. Both the absence of a diagnosis or an incorrect diagnosis can have therapeutic implications. Genetic testing might increase the diagnostic accuracy in patients with CKD, especially in patients with unknown etiology. The diagnostic utility of NGS has been shown mainly in pediatric CKD cohorts, while emerging data suggest that genetic testing can also be a valuable diagnostic tool in adults with CKD. In addition to its implications for unexplained CKD, NGS can contribute to the diagnostic process in kidney diseases with an atypical presentation, where it may lead to reclassification of the primary renal disease diagnosis. So far, only a few studies have reported on the diagnostic yield of NGS-based techniques in patients with unexplained CKD. Here, we will discuss the potential diagnostic role of gene panels and whole exome sequencing in pediatric and adult patients with unexplained and atypical CKD

    Pharmacogenetics of Drug-Induced QT Interval Prolongation: An Update

    Get PDF
    A prolonged QT interval is an important risk factor for ventricular arrhythmias and sudden cardiac death. QT prolongation can be caused by drugs. There are multiple risk factors for drug-induced QT prolongation, including genetic variation. QT prolongation is one of the most common reasons for withdrawal of

    Diagnostic yield of massively parallel sequencing in patients with chronic kidney disease of unknown etiology:rationale and design of a national prospective cohort study

    Get PDF
    INTRODUCTION: Chronic kidney disease (CKD) can be caused by a variety of systemic or primary renal diseases. The cause of CKD remains unexplained in approximately 20% of patients. Retrospective studies indicate that massively parallel sequencing (MPS)-based gene panel testing may lead to a genetic diagnosis in 12%–56% of patients with unexplained CKD, depending on patient profile. The diagnostic yield of MPS-based testing in a routine healthcare setting is unclear. Therefore, the primary aim of the VARIETY (Validation of algoRithms and IdEnTification of genes in Young patients with unexplained CKD) study is to prospectively address the diagnostic yield of MPS-based gene panel testing in patients with unexplained CKD and an estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m(2) before the age of 50 years in clinical practice. METHODS AND ANALYSIS: The VARIETY study is an ongoing, prospective, nationwide observational cohort study to investigate the diagnostic yield of MPS-based testing in patients with unexplained CKD in a routine healthcare setting in the Netherlands. Patients are recruited from outpatient clinics in hospitals across the Netherlands. At least 282 patients will be included to meet the primary aim. Secondary analyses include subgroup analyses according to age and eGFR at first presentation, family history, and the presence of extrarenal symptoms. ETHICS AND DISSEMINATION: Ethical approval for the study has been obtained from the institutional review board of the University Medical Center Groningen. Study findings should inform physicians and policymakers towards optimal implementation of MPS-based diagnostic testing in patients with unexplained CKD

    CYP1A2 and coffee intake and the modifying effect of sex, age, and smoking

    Get PDF
    Background: The enzyme CYP1A2 (cytochrome 1A2) is involved in the metabolism of certain drugs and caffeine, and its activity can be influenced by factors such as sex, age, and smoking. The single nucleotide polymorphism (SNP) rs762551A>C, which has also been studied for its modifying effect on cardiovascular disease, has been reported to alter enzyme activity. Objective: The objective was to study the effect of CYP1A2, sex, age, and smoking on coffee intake. Design: Within the Rotterdam Study, a population-based cohort, all coffee drinkers for whom genome-wide association data were available were selected. Because SNP rs762551 was not on the Illumina 550 platform, SNP rs2472299 was used as a proxy, with the A allele of rs762551 linked to the G allele of rs2472299. Linear regression analyses were used to determine the effect and interaction of rs2472299, sex, age, and smoking on coffee intake. Adjusted geometric means of coffee intake were calculated per genotype for the different smoking and sex strata by using multivariable general linear models. A combined analysis, with the use of a "risk score,"was performed to determine the contribution of each separate factor. Results: rs2472299G>A, female sex, and nonsmoking were significantly inversely related to coffee intake. Coffee intake was lowest in nonsmoking women homozygous for rs2472299G>A (3.49 cups/d; ∼436 mL). All factors contributed almost linearly to the intake of coffee, with the highest coffee intake in smoking men without the A allele (5.32 cups/d; ∼665 mL). Conclusion: rs2472299G>A, linked to rs762551A>C, sex, age, and smoking significantly contribute to coffee intake

    Genetic Determinants of Serum Calcification Propensity and Cardiovascular Outcomes in the General Population

    Get PDF
    BACKGROUND: Serum calciprotein particle maturation time (T(50)), a measure of vascular calcification propensity, is associated with cardiovascular morbidity and mortality. We aimed to identify genetic loci associated with serum T(50) and study their association with cardiovascular disease and mortality. METHODS: We performed a genome-wide association study of serum T(50) in 2,739 individuals of European descent participating in the Prevention of REnal and Vascular ENd-stage Disease (PREVEND) study, followed by a two-sample Mendelian randomization (MR) study to examine causal effects of T(50) on cardiovascular outcomes. Finally, we examined associations between T(50) loci and cardiovascular outcomes in 8,566 community-dwelling participants in the Rotterdam study. RESULTS: We identified three independent genome-wide significant single nucleotide polymorphism (SNPs) in the AHSG gene encoding fetuin-A: rs4917 (p = 1.72 × 10(−101)), rs2077119 (p = 3.34 × 10(−18)), and rs9870756 (p = 3.10 × 10(−8)), together explaining 18.3% of variation in serum T(50). MR did not demonstrate a causal effect of T(50) on cardiovascular outcomes in the general population. Patient-level analyses revealed that the minor allele of rs9870756, which explained 9.1% of variation in T(50), was associated with a primary composite endpoint of all-cause mortality or cardiovascular disease [odds ratio (95% CI) 1.14 (1.01–1.28)] and all-cause mortality alone [1.14 (1.00–1.31)]. The other variants were not associated with clinical outcomes. In patients with type 2 diabetes or chronic kidney disease, the association between rs9870756 and the primary composite endpoint was stronger [OR 1.40 (1.06–1.84), relative excess risk due to interaction 0.54 (0.01–1.08)]. CONCLUSIONS: We identified three SNPs in the AHSG gene that explained 18.3% of variability in serum T(50) levels. Only one SNP was associated with cardiovascular outcomes, particularly in individuals with type 2 diabetes or chronic kidney disease

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD

    Multiple Independent Genetic Factors at NOS1AP Modulate the QT Interval in a Multi-Ethnic Population

    Get PDF
    Extremes of electrocardiographic QT interval are associated with increased risk for sudden cardiac death (SCD); thus, identification and characterization of genetic variants that modulate QT interval may elucidate the underlying etiology of SCD. Previous studies have revealed an association between a common genetic variant in NOS1AP and QT interval in populations of European ancestry, but this finding has not been extended to other ethnic populations. We sought to characterize the effects of NOS1AP genetic variants on QT interval in the multi-ethnic population-based Dallas Heart Study (DHS, n = 3,072). The SNP most strongly associated with QT interval in previous samples of European ancestry, rs16847548, was the most strongly associated in White (P = 0.005) and Black (P = 3.6×10−5) participants, with the same direction of effect in Hispanics (P = 0.17), and further showed a significant SNP × sex-interaction (P = 0.03). A second SNP, rs16856785, uncorrelated with rs16847548, was also associated with QT interval in Blacks (P = 0.01), with qualitatively similar results in Whites and Hispanics. In a previously genotyped cohort of 14,107 White individuals drawn from the combined Atherosclerotic Risk in Communities (ARIC) and Cardiovascular Health Study (CHS) cohorts, we validated both the second locus at rs16856785 (P = 7.63×10−8), as well as the sex-interaction with rs16847548 (P = 8.68×10−6). These data extend the association of genetic variants in NOS1AP with QT interval to a Black population, with similar trends, though not statistically significant at P<0.05, in Hispanics. In addition, we identify a strong sex-interaction and the presence of a second independent site within NOS1AP associated with the QT interval. These results highlight the consistent and complex role of NOS1AP genetic variants in modulating QT interval
    corecore